Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Watykan zakazuje sprzedaży jednorazowego plastiku

Recommended Posts

Watykan zakazuje sprzedaży plastikowych przedmiotów jednorazowego użytku. Na terenie państwa tego typu przedmioty można będzie sprzedawać wyłącznie do wyczerpania obecnych zapasów w sklepach.

Poczas gdy Unia Europejska zapowiedziała, że chce wprowadzić zakaz sprzedaży jednorazowych przedmiotów plastikowych od roku 2021 Watykan już od pewnego czasu ogranicza użycie takich przedmiotów, a wkrótce w ogóle nie będą one sprzedawane, poinformował Rafael Ignacio Tornini, szef wydziału odpowiedzialnego w Watykanie za utrzymanie ogrodów i sprzątanie odpadów.
Próbujemy poddawać recyklingowi jak najwięcej plastiku, a obecnie ograniczamy sprzedaż plastikowych przedmiotów jednorazowego użytku, powiedział Tornini w wywiadzie dla agencji ANSA.

Wśród przedmiotów, których sprzedaży zakazano znajdują się torby, butelki na wodę, plastikowe sztućce, słomki czy balony.

Watykan od dawna dba o ekologię. Najbardziej znanym tego przejawem stało się zainstalowanie w 2008 roku panel słonecznym na Auli Pawła VI. W tym samym roku ruszył też program segregowania odpadów. Obecnie 55% odpadów z Watykanu jest odpowiednio segregowanych i poddawanych recyklingowi. Celem władz Watykanu jest osiągnięcie w ciągu 2-3 lat zalecanego przez UE poziomu 70–75 procent segregowanych i przetwarzanych odpadów.

Watykan ma mniej niż 1000 obywateli, jednak do tego należy doliczyć kilka tysięcy pracowników oraz miliony turystów rocznie. Rocznie w Watykanie zbieranych jest około 1000 ton śmieci.

Przed pięcioma miesiącami rozpoczęto tam specjalny program zbierania odpadów organicznych. Są one zbierane z gospodarstw i domów Watykanu, miesza się je z odpadami zielonymi i tworzy kilkaset ton nawozu, który jest wykorzystywany w ogrodach Watykanu oraz papieskiej rezydencji w Castel Gandolfo.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Prowadzone przez 7 lat badania wykazały, że na Wielkiej Pacyficznej Plamie Śmieci fragmentów plastiku o rozmiarach około 1 centymetra przybywa znacznie szybciej niż większych fragmentów. Zagraża to lokalnemu ekosystemowi, a autorzy badań obawiają się też o globalny cykl węglowy. Dane do badań zebrano w latach 2015–2022 kiedy to pobrano ponad 1000 akcji zbierania próbek, przeprowadzono 74 rozpoznania z powietrza oraz uruchomiono 40 systemów oczyszczania oceanu z plastikowych śmieci.
      Wielka Pacyficzna Plama Śmieci to gigantyczne skupisko odpadów, przede wszystkim plastikowych, które zostało utworzone przez prądy oceaniczne w północnej części Pacyfiku, pomiędzy Kalifornią a Hawajami. Trafiają tam śmieci z całego świata. Plama została odkryta w 1997 roku. Prowadzone przez siedem lat badania pokazały dramatyczny obraz zmian, jakie tam zachodzą.
      W ciągu tych siedmiu wspomnianych lat masa plastiku w plamie wzrosła z 2,9 do 14,2 kilograma na kilometr kwadratowy, a od 74 do 96 procent nowych śmieci stanowią odpady z odległych części planety. W tym samym czasie powierzchnia obszaru największej koncentracji małych odpadów zwiększyła się z 1 do 10 milionów kilometrów kwadratowych. Znacząco wzrosła też liczba odpadów poszczególnych frakcji. I tak liczba fragmentów mikroplastiku (0,5–5 mm) zwiększyła się z 960 000 do 1 500 000 na każdy kilometr kwadratowy. Liczba mezoplastiku (5–50 mm) wzrosła z 34 000 do 235 000 na km2, a liczba fragmentów makroplastiku (50–500 mm) wynosi już nie 800 a 1800 na kilometr kwadratowy.
      Całkowita objętość plastikowych odpadów w tym regionie jest większa niż całkowita objętość organizmów żywych. To stwarza olbrzymie zagrożenie dla organizmów żywych związane z połykaniem czy zaplątaniem się w odpady. Może zagrażać też światowemu cyklowi obiegu węgla, gdyż obecność pływającego mikroplastiku może zaburzać zdolność zooplanktonu do odżywiania się. Coraz więcej kawałków plastiku oznacza również, że rodzime organizmy morskie muszą bezpośrednio konkurować z organizmami, które zasiedliły plastikowe śmieci i zostały tam przyniesione przez prądy oceaniczne.
      Gwałtowny wzrost liczby plastikowych odpadów to bezpośrednia konsekwencja dziesięcioleci zaniedbań w gospodarce plastikowymi odpadami, co prowadzi do nieprzerwanej akumulacji plastiku w środowisku morskim. To szkodzi ekosystemowi, a my dopiero zaczynamy rozumieć, jak wielkie są to szkody. Nasze badania powinny być dzwonkiem alarmowym dla polityków negocjujących globalny traktat, który ma zakończyć zanieczyszczenie plastikiem. Działania na skalę światową i rozwiązanie tego problemu są niezbędne, mówi główny autor badań, Laurent Leberton.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Guoliang Liu z Wydziału Chemii Virginia Polytechnic Institute and State University (Virginia Tech), opracował metodę przetwarzania plastików – od „kartonowych” pojemników na napoje, poprzez pojemniki na żywność i foliowe torebki – na mydło. Jego tajemnica polega na podgrzewaniu długichł łańcuchów polimerowych i ich gwałtownym chłodzeniu. Mamy tutaj więc do czynienia z tzw. upcyclingiem, czyli uzyskiwaniem z przetwarzanego przedmiotu produktu o wysokiej wartości. W tym przypadku są do surfaktanty, które może zamienić w mydło czy detergent. Bardzo często recykling wiąże się z downcyklingiem, gdy poddany mu przedmiot można zamienić na produkt o niższej wartości.
      Zamiana plastiku na mydło może być zaskakująca, ale oba te produkty mają wiele wspólnego na poziomie molekularnym. Struktura chemiczna polietylenu, jednego z najpowszechniej używanych tworzyw sztucznych, ma niezwykle podoba do struktury kwasów tłuszczowych używanych do produkcji mydła. Oba te materiały mają długie łańcuchy węglowe, jednak kwasy tłuszczowe mają na końcu łańcucha dodatkową grupę atomów.
      Guoliang Liu od dłuższego czasu uważał, że dzięki temu podobieństwu powinno się udać zamienić polietylen w kwas tłuszczowy do produkcji mydła. Pytanie brzmiało, jak podzielić długie łańcuchy polimerowe na krótsze, ale nie za krótkie, i zrobić to efektywnie. Jeśli by się to udało, można by z plastikowych odpadów o niskiej wartości uzyskać produkt o wysokiej wartości.
      Inspiracją dla naukowca stało się dymu z palącego się w kominku drewna.
      Drewno kominkowe składa się głównie z polimerów, jak celuloza. Jego spalanie rozrywa polimery na mniejsze łańcuchy, następnie na małe gazowe molekuły, które w końcu utleniają się do tlenku węgla. Jeśli podobnie przerwiemy molekuły polietylenu, ale przerwiemy proces zanim staną się one molekułami gazowymi, powinniśmy otrzymać krótkie łańcuchy podobne do molekuł polimerów, stwierdził. W swoim laboratorium wykorzystał termolizę z gradientem temperatury. Na dole urządzenia do termolizy panuje wystarczająco wysoka temperatura, by poprzerywać łańcuchy polimerowe, a na górze jest ono na tyle schłodzone, że proces przerywania łańcuchów nie zachodzi. Po termolizie naukowcy zebrali sadzę z góry pieca i okazało się, że zawiera ona woski. Potrzebnych było jeszcze kilka etapów obróbki chemicznej, w tym zmydlanie, by otrzymać pierwsze w historii mydło z plastiku.
      Cała procedura została przeanalizowana przez ekspertów od modelowania komputerowego, analiz ekonomicznych i innych dziedzin. Efektem prac jest artykuł opublikowany w Science. Nasze badania pokazują nowy sposób upcyclingu plastiku bez konieczności stosowania nowych katalizatorów czy złożonych procedur. To powinno zachęcić innych do opracowania kolejnych metod zamiany plastikowych odpadów na cenne produkty, mówi główny autor artykułu, Zhen Xu.
      Co więcej, analizy wykazały, że tę samą metodę można wykorzystać podczas pracy z polipropylenem. Wraz z polietylenem stanowi od większość plastiku, z jakim mamy do czynienia w codziennym życiu. Dodatkową zaletą jest fakt, że metodę Liu można wykorzystać bez potrzeby oddzielania polietylenu od polipropylenu. Można je jednocześnie przetwarzać.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Jagiellońskiego opracowali technologie, które pozwalają uniezależnić się od zagranicznych dostawców drogich metali i grafitu do akumulatorów, spełniają wymogi zielonej chemii, część z nich nie pozostawia śladu węglowego, a jakby tego było mało, prototypowe akumulatory mają parametry porównywalne lub lepsze od już istniejących. Z badań Zespołu Technologii Materiałów i Nanomateriałów Wydziału Chemii UJ, na czele którego stoi profesor Marcin Molenda, wynika, że za pomocą tzw. zielonej chemii można produkować bardziej ekologiczne akumulatory oraz uniezależnić się od rzadkich i szkodliwych dla środowiska materiałów.
      Jedną z technologii opracowanych przez zespół Molendy jest CAG, która pozwala na wytwarzanie materiałów na anody z żelu węglowego. Żel taki (carbogel) pozyskuje się ze skrobi, której źródłem mogą być ziemniaki, ryż czy kukurydza. Skrobię poddaje się żelatynizacji z użyciem wody, a następnie kontrolowanej pirolizie, w której spalane są wydzielające się gazy. Jak zapewniają naukowcy, CAG pozwala całkowicie zastąpić grafit naturalny i syntetyczny, metoda charakteryzuje się zerowym śladem węglowym, oparta jest na bezpiecznym łańcuchu dostaw surowca i nie cierpi na tym wydajność samego urządzenia. Żywotność CAG wynosi ponad 1500 cykli ładowania/rozładowania, a uzyskany tą metodą materiał można zintegrować z dowolnymi nowoczesnymi katodami w akumulatorach LiIon.
      Opracowany carbogel jest odpowiedni do produkcji zielonych ogniw litowo-jonowych o obniżonym śladzie węglowym. Ogromną korzyścią jest przy tym swobodny dostęp do surowca i całkowite uniezależnienie się od zagranicznych dostawców grafitu. CAG wykazuje porównywalną gęstość energii w porównaniu do akumulatorów z naturalnym grafitem, a dodatkowo ma tę przewagę, że pozwala na uzyskanie wyższej mocy, zapewnia profesor Molenda.
      Kolejną z technologii opracowanych na UJ jest LKMNO. Pozwala ona na produkcję wysokonapięciowych katod do akumulatorów litowo-jonowych bez korzystania z kobaltu, z 5-krotnie mniejszą ilością niklu i 2-krotnie niższą zawartością litu w porównaniu do akumulatorów NMC (litowo-niklowo-manganowo-kobaltowych). Również i tutaj wykorzystywana jest zielona chemia o dość niskiej energochłonności całego procesu. Co więcej, podczas produkcji tego typu katody nie powstają odpady płynne i stałe, a gazy są przetwarzane do dwutlenku węgla, azotu i pary wodnej. Katody LKMNO można łączyć z różnymi typami anod – w tym CAG – i współczesnymi elektrolitami. Takie katody szczególnie nadają się do ogniw o dużej mocy i pojemności, np. samochodów elektrycznych.
      Koszt wytworzenia katody LKMNO jest dwukrotnie mniejszy w porównaniu z kosztami produkcji najnowocześniejszych katod klasy NMC, w których jest nikiel, mangan i kobalt. Dodatkową przewagą naszego rozwiązania jest to, iż użyty w akumulatorze lit, którego potrzeba dwukrotnie mniej niż w NMC, jest w pełni efektywny. We współczesnych bateriach litowo-jonowych lit, który jest dość kosztowny, pracuje w około 50 proc. To czyste marnotrawstwo. W modelu LKMNO jest on wykorzystany w 100 procentach, stwierdza profesor Molenda.
      Na anodzie i katodzie się jednak nie kończy. Polscy naukowcy stworzyli też CCL (Carbon Conductive Layer), czyli nanotechnologiczną metodę precyzyjnego pokrywania materiałów aktywnych akumulatora cienka powłoką węgla. Grubość takiej powłoki, liczona w nanometrach, może być dostosowana już na etapie produkcji do przeznaczenia i sposobu działania akumulatora, co pozwala na znaczne zagęszczanie energii. Jednak największym atutem wynalazku jest praktyczne wyeliminowanie ryzyka samozapłonu akumulatora.
      Materiał węglowy dodawany do akumulatorów ma na celu zapewnić odpowiednie przewodnictwo elektryczne. Dotychczas stosowane technologie nie pozwalają jednak w precyzyjny sposób rozmieszczać cząsteczek węglowych pomiędzy ziarnami materiałów aktywnych. W rezultacie do akumulatorów dodawane są znaczne ilości węgla, a im jest go więcej, tym mniejsze są możliwości zagęszczania w nich energii. Ponieważ akumulator podczas pracy podlega wahaniom temperatury, przy nierównomiernie rozmieszczonych cząsteczkach materiału węglowego wzrasta ryzyko uruchomienia nieodwracalnej reakcji samozapłonu akumulatora. Nasza powłoka CCL eliminuje takie ryzyko, ponieważ ziarna materiału aktywnego w akumulatorze są szczelnie pokryte, co skutecznie je od siebie oddziela. Taka bateria, nawet gdy dojdzie w niej do zwarcia, będzie rozładowywać się znacznie wolniej i nie ulegnie samozapłonowi. Powłoka CCL pokrywa na tyle szczelnie i trwale materiał aktywny, że nawet w przypadku, gdy ma on porowatą strukturę, dostaje się ona w zagłębienia, a przy znacznych wahaniach temperatur utrzymuje się ona na swojej pozycji, cieszy się profesor Moleda. Żywotność prototypowych ogniw zbudowanych z użyciem CCL sięgała 3000 cykli.
      Centrum Transferu Technologii UJ poszukuje obecnie inwestora lub producenta, który zbuduje instalację pilotażową i ustandaryzuje produkcję nowego typu ogniw w skali przemysłowej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Tworzywa sztuczne to jedno z największych zagrożeń dla środowiska naturalnego. Tymczasem recykling plastiku to wielka porażka. Ludzkość poddaje recyklingowi jedynie 9% wytwarzanego przez siebie plastiku. Jakby tego było mało, autorzy najnowszych badań informują, że techniki wykorzystywane w przetwórstwie tworzyw sztucznych... zwiększają zanieczyszczenie środowiska mikroplastikiem. Do takich wniosków doszli naukowcy z University of Strathclyde w Szkocji i Dalhousie University w Kanadzie, którzy badali wodę wykorzystywaną do czyszczenia plastiku w zakładach przetwórstwa.
      Globalna produkcja plastiku szybko rośnie. Tylko w latach 2018–2020 zwiększyła się ona z 359 do 367 milionów ton rocznie. Miliony ludzi na całym świecie segregują plastik we własnych domach. W znacznej części i tak trafia on jednak na wysypisko. A teraz dowiadujemy się, że ta niewielka część, która poddawana jest recyklingowi, sprawia jeszcze większe problemy. Wynikają one z tego, że plastik przed recyklingiem należy wymyć. Później tworzywo jest mielone i przetapiane na pelet.
      Szkocko-kanadyjski zespół naukowy przyjrzał się procesowi recyklingu plastiku w supernowoczesnym zakładzie przetwórstwa w Wielkiej Brytanii, który co roku przyjmuje 22 680 ton zmieszanych odpadów z tworzyw sztucznych. Plastikowe odpady są myte w zakładzie czterokrotnie. Uczeni przyjrzeli się więc wodzie po każdym z tych cykli mycia, badając, ile pozostaje w niej mikroplastiku.
      Okazało się, że mikroplastik obecny był w wodzie po każdym cyklu mycia. W badanym zakładzie, przez pewien czas po rozpoczęciu pracy, nie było systemu filtrowania wody spuszczanej do kanalizacji ściekowej. Dlatego też naukowcy mogli zbadać efektywność systemu filtrującego oraz dać nam wyobrażenie, jak bardzo zanieczyszczają środowisko zakłady wyposażone w w filtry oraz ich nie posiadające.
      Okazało się, że filtry o około 50% zmniejszały zawartość mikroplastiku w wodzie. Mimo to z szacunków wynika, że nawet po pełnym cyklu filtrowania do środowiska może trafiać tylko z tego badanego zakładu od 4 do 1366 ton mikroplastiku rocznie, a zatem do 5% przetwarzanej masy. Co gorsza, filtry dość skutecznie wyłapują większe kawałki mikroplastiku, słabo zaś radzą sobie z tymi najmniejszymi. A to one z największą łatwością przenikają w głąb organizmów żywych.
      Mikroplastik wykryto już w ludzkich jelitach, krwi, naczyniach krwionośnych, płucach, łożysku i mleku matki. Znaleziono go w każdej tkance ludzkiego organizmu, w jakiej go poszukiwano. Nie znamy zagrożeń, jakie dla człowieka niesie zanieczyszczenie organizmu plastikiem. Nie jest on jednak obojętny. Ostatnio naukowcy opisali nową jednostkę chorobową u ptaków – plastikozę. Nie ma więc gwarancji, że i u ludzi mikroplastik nie wywołuje chorób.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy opisali nową jednostkę chorobową u ptaków. Plastikoza jest powodowana przez niewielkie kawałki plastiku, które wywołują stan zapalny w przewodzie pokarmowym. Została opisana u ptaków morskich, ale odkrywcy nie wykluczają, że to tylko wierzchołek góry lodowej. Na zewnątrz ptaki te wyglądają na zdrowe, jednak nie jest z nimi dobrze, mówi doktor Alex Bond z Muzeum Historii Naturalnej w Londynie. Ciągły stan zapalny prowadzi do bliznowacenia i deformacji tkanki, co negatywnie wpływa na rozwój i szanse przeżycia ptaków.
      To pierwsze przeprowadzone w ten sposób badania. Wykazały one, że spożywanie plastiku może poważnie uszkodzić przewód pokarmowy ptaków, dodaje uczony. Chorobę zidentyfikowano dotychczas u jednego gatunku, burzyka bladodziobego. Biorąc jednak pod uwagę stopień zanieczyszczenia środowiska naturalnego plastikiem, nie można wykluczyć, że dotyka ona też innych gatunków.
      Autorzy badań opisanych na łamach Journal of Hazardous Materials przez ponad 10 lat badali ptaki na wyspie Lord Howe. Zauważyli, że przebywające tam burzyki są najbardziej zanieczyszczonymi plastikiem ptakami na planecie. Zjadają plastik unoszący się na powierzchni wody, myląc go z pożywieniem. Naukowcy postanowili bliżej się temu przyjrzeć. W ten sposób odkryli nową jednostkę chorobową powodującą zwłóknienia tkanki i na wzór podobnych chorób – jak azbestoza – nadali jej nazwę plastikozy.
      Choroba ta, wywoływana przez ciągły stan zapalny spowodowany obecnością kawałków plastiku, prowadzi do formowania nadmiernego bliznowacenia i włóknienia tkanki, co zmniejsza jej elastyczność i prowadzi do zmiany struktury. Okazało się, że wśród burzyków na Lord Howe takie zwłóknienie żołądka gruczołowego jest czymś powszechnym. Dlatego też uznano to za nową jednostkę chorobową.
      Bliznowacenie tkanki narusza strukturę fizyczną żołądka gruczołowego. W miarę zwiększania się ekspozycji na plastik, tkanka poddana jest coraz poważniejszemu stanowi zapalnemu, aż do wystąpienia poważnych uszkodzeń. Dobrym przykładem plastikozy jest jej wpływ na gruczoły wydzielające soki trawienne. W miarę, jak ptak połyka kolejne kawałki plastiku, funkcje tych gruczołów ulegają coraz większemu upośledzeniu, aż w końcu dochodzi do całkowitej utraty struktury tkanki, mówi Bond. W wyniku utraty tych gruczołów, ptaki są bardziej podatne na infekcje oraz pasożyty, dochodzi również do zmniejszenie wchłaniania witamin.
      Bliznowacenie powoduje też, że żołądek staje się twardszy i sztywniejszy, co upośledza trawienie. Jest to szczególnie niebezpieczne dla piskląt i młodych ptaków, które mają mniejsze żołądki. Obecność plastiku zauważono w odchodach aż 90% młodych karmionych jeszcze przez rodziców. W ekstremalnych przypadkach prowadzi to do śmierci głodowej ptaka, którego żołądek zostaje całkowicie zapchany plastikiem. Plastikoza może mieć też wpływ na rozwój ptaków. Zauważono bowiem, że długość skrzydeł ptaków oraz waga zwierząt jest skorelowana z ilością plastiku w organizmach.
      Ptaki w sposób naturalny spożywają materię nieorganiczną, na przykład kamyki. Jednak naukowcy nie zauważyli, by prowadziło to do bliznowacenia w układzie pokarmowym. Za to obecnie w żołądku kamyki mogą rozbijać plastik na mniejsze kawałki, przez co jest on jeszcze bardziej niebezpieczny dla ptaków.
      Bond i jego zespół już wcześniej znaleźli mikroplastik w nerkach i śledzionie ptaków, gdzie również wywoływał stany zapalne, włóknienie i utratę struktury tkanki. Nie można wykluczyć, że w podobny sposób plastik wpływa na wiele innych gatunków zwierząt.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...