-
Similar Content
-
By KopalniaWiedzy.pl
Gdyby większość ciemnej materii istniała nie w postaci w formie cząstek, a mikroskopijnych czarnych dziur, to mogłyby one wpływać na orbitę Marsa tak, że bylibyśmy w stanie wykryć to za pomocą współczesnej technologii. Zatem zmiany orbity Czerwonej Planety mogłyby posłużyć do szukania ciemnej materii, uważają naukowcy z MIT, Uniwersytetu Stanforda i Uniwersytetu Kalifornijskiego w Santa Cruz. A wszystko zaczęło się od odrodzenia hipotezy z lat 70. XX wieku i pytania o to, co stałoby się z człowiekiem, przez którego przeszłaby miniaturowa czarna dziura.
Pomysł, że większość ciemnej materii, której wciąż nie potrafimy znaleźć, istnieje w postaci miniaturowych czarnych dziur, narodził się w latach 70. Wysunięto wówczas hipotezę, że u zarania wszechświata z zapadających się chmur gazu powstały niewielkie czarne dziury, które w miarę ochładzania się i rozszerzania wszechświata, rozproszyły się po nim. Takie czarne dziury mogą mieć wielkość pojedynczego atomu i masę największych znanych asteroid. W ostatnich latach hipoteza ta zaczęła zdobywać popularność w kręgach naukowych.
Niedawno jeden z autorów badań, Tung Tran, został przez kogoś zapytany, co by się stało, gdyby taka pierwotna czarna dziura przeszła przez człowieka. Tran chwycił za coś do pisania i wyliczył, że gdyby tego typu czarna dziura minęła przeciętnego człowieka w odległości 1 metra, to osoba taka zostałaby w ciągu 1 sekundy odrzucona o 6 metrów. Badacz wyliczył też, że prawdopodobieństwo, by taki obiekt znalazł się w pobliżu kogokolwiek na Ziemi jest niezwykle małe.
Jednak Tung postanowił sprawdzić, co by się stało, gdyby miniaturowa czarna dziura przeleciała w pobliżu Ziemi i spowodowała niewielkie zmiany orbity Księżyca. Do pomocy w obliczeniach zaprzągł kolegów. Wyniki, które otrzymaliśmy, były niejasne. W Układzie Słonecznym mamy do czynienia z tak dynamicznym układem, że inne siły mogłyby zapobiec takim zmianom, mówi uczony.
Badacze, chcąc uzyskać jaśniejszy obraz, stworzyli uproszczoną symulację Układu Słonecznego składającego się z wszystkich planet i największych księżyców. Najdoskonalsze symulacje Układu biorą pod uwagę ponad milion obiektów, z których każdy wywiera jakiś wpływ na inne. Jednak nawet nasza uproszczona symulacja dostarczyła takich danych, które zachęciły nas do bliższego przyjrzenia się problemowi, wyjaśnia Benjamin Lehmann z MIT.
Na podstawie szacunków dotyczących rozkładu ciemnej materii we wszechświecie i masy miniaturowych czarnych dziur naukowcy obliczyli, że taka wędrująca we wszechświecie czarna dziura może raz na 10 lat trafić do wewnętrznych regionów Układu Słonecznego. Wykorzystując dostępne symulacje rozkładu i prędkości przemieszczania się ciemnej materii w Drodze Mlecznej, uczeni symulowali przeloty tego typu czarnych dziur z prędkością około 241 km/s. Szybko odkryli, że o ile efekty przelotu takiej dziury w pobliżu Ziemi czy Księżyca byłyby trudne do obserwowania, gdyż ciężko byłoby stwierdzić, że widoczne zmiany wywołała czarna dziura, to w przypadku Marsa obraz jest już znacznie jaśniejszy.
Z symulacji wynika bowiem, że jeśli pierwotna czarna dziura przeleciałaby w odległości kilkuset milionów kilometrów od Marsa, po kilku latach orbita Czerwonej Planety zmieniłaby się o około metr. To wystarczy, by zmianę taką wykryły instrumenty, za pomocą których badamy Marsa.
Zdaniem badaczy, jeśli w ciągu najbliższych dziesięcioleci zaobserwujemy taką zmianę, powinniśmy przede wszystkim sprawdzić, czy nie została ona spowodowana przez coś innego. Czy to nie była na przykład nudna asteroida, a nie ekscytująca czarna dziura. Na szczęście obecnie jesteśmy w stanie z wieloletnim wyprzedzeniem śledzić tak wielkie asteroidy, obliczać ich trajektorie i porównywać je z tym, co wynika z symulacji dotyczących pierwotnych czarnych dziur, przypomina profesor David Kaiser z MIT.
A profesor Matt Caplan, który nie był zaangażowany w badania, dodaje, że skoro mamy już obliczenia i symulacje, to pozostaje najtrudniejsza część – znalezienie i zidentyfikowanie prawdziwego sygnału, który potwierdzi te rozważania.
« powrót do artykułu -
By KopalniaWiedzy.pl
Najbliższe Ziemi czarne dziury znajdują się w gromadzie Hiady, informuje międzynarodowy zespół naukowy na łamach Monthly Notices of the Royal Astronomical Society. Hiady (Dżdżownice) to najbliższa Układowi Słonecznemu gromada otwarta. Najnowsze badania pokazują, że znajduje się tam co najmniej kilka czarnych dziur. Gromady otwarte to luźno powiązane grawitacją grupy setek do tysięcy zwykle młodych gwiazd. W Hiadach gwiazd jest około 300, a większości z nich nie widać gołym okiem.
Dzięki obserwacjom prowadzonym przez należące do ESA obserwatorium kosmiczne Gaia znamy dokładne prędkości i pozycje gwiazd w Hiadach. Naukowcy z Włoch, Hiszpanii, Chin, Niemiec i Holandii przeprowadzili symulacje ruchu wszystkich gwiazd w Hiadach i porównali je z danymi z Gai. "Nasze symulacje odpowiadają rzeczywistej masie i rozmiarom Hiad tylko wówczas, gdy w centrum gromady znajdują się – lub znajdowały się niedawno – czarne dziury", mówi Stefano Torniamenti z Uniwersytetu w Padwie.
Obserwowane właściwości Hiad najlepiej odpowiadają symulacjom, gdy przyjmiemy, że w gromadzie znajdują się 2-3 gwiazdowe czarne dziury. Symulacje, w których dziury zostały wyrzucone z gromady nie dawniej niż 150 milionów lat temu (Hiady mają ok. 600 milionów lat), także – choć nie tak dobrze – odpowiadają danym obserwacyjnym.
Czarne dziury znajdujące się w Hiadach lub w pobliżu są zatem najbliższymi nam obiektami tego typu. Ich odległość od Układu Słonecznego wynosi około 45 parseków, czyli ok. 150 lat świetlnych. Dotychczas najbliższa nam znaną czarną dziurą była Gaia BH1 o odległości 480 parseków (1560 l.ś.) od Słońca.
« powrót do artykułu -
By KopalniaWiedzy.pl
W centrum naszej galaktyki naukowcy znaleźli nieznane wcześniej struktury. Nieco przypominają one gigantyczne jednowymiarowe włókna materii rozciągające się pionowo w pobliżu centralnej supermasywnej czarnej dziury Sagittarius A*, jakie przed 40 laty zaobserwował Farhad Yusef-Zadek z Northwester University. Jednak nowe struktury, odkryte właśnie przez Yusefa-Zadeha i jego zespół, są znacznie mniejsze i ułożone horyzontalnie od Sgr A*, tworzą coś na podobieństwo szprych koła.
Populacje obu włókien są podobne w niektórych aspektach, jednak zdaniem odkrywców, mają różne pochodzenie. Giganty mają wyraźny kształt włókien o wysokości dochodzącej do 150 lat świetlnych. Tymczasem włókna poziome są niewielkie, przypominają kropki i kreski z kodu Morse'a, a każde z nich znajduje się tylko po jednej stronie czarnej dziury.
Byłem zaskoczony tym, co zauważyłem. Dużo czasu zajęła nam weryfikacja tego, co widzimy. I odkryliśmy, że te włókna nie są rozłożone przypadkowo, ale wydają się związane z tym, co wydobywa się z czarnej dziury. Badając je, możemy więcej dowiedzieć się o obrocie czarnej dziury i orientacji dysku akrecyjnego mówi Yusef-Zadeh.
Profesor fizyki i astronomii, Yusef-Zadech, od ponad 40 lat bada centrum Drogi Mlecznej. W 1984 roku był współodkrywcą olbrzymich pionowych włókien w pobliżu czarnej dziury, a przed 4 laty odkrył w centrum Drogi Mlecznej dwa bąble o długości 700 lat świetlnych każdy. W ubiegłym zaś roku, we współpracy z innymi ekspertami, zarejestrował setki poziomych włókien, które ułożone są w pary lub grupy i bardzo często są równomiernie rozłożone, na podobieństwo strun instrumentu. Uczony, specjalista od radioastronomii, mówi, że coraz częstsze odkrycia tego typu to zasługa nowych technologii i dostępnych instrumentów, szczególnie zaś radioteleskopu MeerKAT z RPA. Ten instrument zmienia reguły gry. Rozwój technologiczny i dedykowany czas obserwacyjny dostarczyły nam nowych informacji. To naprawdę duży postęp techniczny w radioastronomii, wyjaśnia uczony.
Yusef-Zadeh, który od dekad bada gigantyczne pionowe włókna był bardzo zaskoczony, gdy zauważył też mniejsze poziome struktury. Ich wiek ocenił na 6 milionów lat. Zawsze myślałem o włóknach pionowych i o ich pochodzeniu. Jestem przyzwyczajony do tego, że są pionowe. Nigdy nie przyszło mi na myśl, że mogą być też poziome, mówi. Oba rodzaje włókien są jednowymiarowe, można je obserwować za pomocą fal radiowych i wydają się powiązane z aktywnością czarnej dziury. Ale na tym się ich podobieństwa kończą.
Włókna pionowe są prostopadłe do płaszczyzny galaktyki. Włókna poziome rozciągnięte są równolegle do płaszczyzny galaktyki, ale promieniście wskazują na jej centrum, gdzie znajduje się Sagittarius A*. Pionowe są magnetyczne i relatywistyczne, poziome wypromieniowują ciepło. Włókna pionowe składają się z cząstek poruszających się niemal z prędkością światła, włókna poziome wydają się przyspieszać gorący materiał znajdujący się w chmurze molekularnej. Dotychczas zaobserwowano setki włókien każdego z rodzajów. Ponadto włókna pionowe mają długość do 150 lat świetlnych, a poziome 5–10 lś. Włókna pionowe znajdują się wszędzie wokół środka galaktyki, natomiast poziomie tylko z jednej strony.
Odkrycie rodzi więcej pytań niż odpowiedzi. Yusef-Zadeh przypuszcza, że włókna poziome powstały podczas jakiegoś emisji z czarnej dziury, która miała miejsce przed milionami lat. Wydają się wynikiem interakcji materiału, który wypływał, z jakimś pobliskim obiektem. Nasza praca nigdy się nie kończy. Zawsze musimy prowadzić nowe badania i weryfikować naszą wiedzę oraz hipotezy, dodaje uczony.
« powrót do artykułu -
By KopalniaWiedzy.pl
W jednym z laboratoriów na Imperial College London odtworzono wirujący dysk plazmy, z tych, jakie otaczają czarne dziury i tworzące się gwiazdy. Eksperyment pozwala lepiej modelować procesy, zachodzące w takich dyskach, a naukowcy mają nadzieję, że dzięki temu dowiedzą się, jak rosną czarne dziury i powstają gwiazdy.
Gdy materia zbliża się do czarnej dziury, jest rozgrzewana i staje się plazmą, czwartym stanem materii składającym się z naładowanych jonów i wolnych elektronów. Zaczyna też się obracać, tworząc dysk akrecyjny. W wyniku obrotu powstają siły odśrodkowe odrzucające plazmę na zewnątrz, jednak siły te równoważy grawitacja czarnej dziury.
Naukowcy chcą poznać odpowiedź na pytanie, w jaki sposób czarna dziura rośnie, skoro materia – w formie plazmy – pozostaje na jej orbicie. Najbardziej rozpowszechniona teoria mówi, że niestabilności w polu magnetycznym plazmy prowadzą do pojawienia się tarcia, plazma traci energię i wpada do czarnej dziury.
Dotychczas mechanizm ten badano za pomocą ciekłych wirujących metali. Za ich pomocą sprawdzano, co dzieje się, gdy pojawi się pole magnetyczne. Jednak metale te zamknięte są w rurach, co nie oddaje w pełni swobodnie poruszającej się plazmy.
Doktor Vincente Valenzuela-Villaseca i jego zespół wykorzystali urządzenie Mega Ampere Generator for Plasma Implosion Experiments (MAGPIE) do stworzenia wirującego dysku plazmy. Za jego pomocą przyspieszyli osiem strumieni plazmy i doprowadzili do ich zderzenia, w wyniku czego powstała obracająca się kolumna plazmy. Odkryli, że im bliżej środka, tym plazma porusza się szybciej. To ważna cecha dysków akrecyjnych.
MAGPIE generuje krótkie impulsy plazmy, przez co w utworzonym dysku dochodziło tylko do jednego obrotu. Jednak liczbę obrotów będzie można zwiększyć wydłużając czas trwania impulsów plazmy. Przy dłużej istniejących dyskach możliwe będzie też zastosowanie pól magnetycznych i zbadanie ich wpływu na plazmę. Zaczynamy badać dyski akrecyjne w nowy sposób, zarówno za pomocą Teleskopu Horyzontu Zdarzeń, jak i naszego eksperymentu. Pozwoli nam to przetestować różne teorie i sprawdzić, czy zgadzają się one z obserwacjami, mówi Valenzuela-Villaseca.
Ze szczegółami badań można zapoznać się na łamach Physical Review Letters.
« powrót do artykułu -
By KopalniaWiedzy.pl
Przed miesiącem pisaliśmy, że astronomowie z Yale University donieśli o odkryciu czarnej dziury, która ciągnie za sobą gigantyczny ogon gwiazd i materii gwiazdotwórczej. Informacja odbiła się szerokim echem, gdyż takie zjawisko wymagałoby spełnienia całego szeregu wyjątkowych warunków. Liczne zespoły naukowe zaczęły poszukiwać alternatywnego wyjaśnienia zaobserwowanej przez Hubble'a struktury. Naukowcy z Instituto de Astrofísica de Canarias przedstawili na łamach Astronomy and Astrophysics Letters własną interpretację obserwowanego zjawiska.
Ich zdaniem niezwykła struktura zarejestrowana przez Hubble'a może być płaską galaktyką, którą widzimy od strony krawędzi. Galaktyki takie nie posiadają centralnego zgrubienia i są dość powszechne. Ruch, rozmiary i liczba gwiazd pasują do tego, co widzimy w płaskich galaktykach w lokalnym wszechświecie, mówi główny autor najnowszych badań, Jorge Sanchez Almeida. Proponowany przez nas scenariusz jest znacznie prostszy. Chociaż z drugiej strony szkoda, że to może być wyjaśnieniem, gdyż teorie przewidują, że wyrzucenie czarnej dziury z galaktyki jest możliwe, tutaj więc mielibyśmy pierwszą obserwację takiego zjawiska, dodaje.
Almeida i jego zespół porównali strukturę zaobserwowaną przez Hubble'a z dobrze znaną nieodległą galaktyką IC5249, która nie posiada centralnego zgrubienia, i znaleźli zaskakująco wiele podobieństw. Gdy przeanalizowaliśmy prędkości w tej odległej strukturze gwiazd okazało się, że odpowiadają one prędkościom obrotowym galaktyk, więc postanowiliśmy porównać tę strukturę ze znacznie nam bliższą galaktyką i okazało się, że są one wyjątkowo podobne, dodaje współautorka artykułu Mireia Montes.
Naukowcy przyjrzeli się też stosunkowi masy do maksymalnej prędkości obrotowej i odkryli, że to galaktyka, która zachowuje się jak galaktyka, stwierdza Ignacio Trujillo. Jeśli uczeni z Wysp Kanaryjskich mają rację, to Hubble odkrył interesujący obiekt. Dużą galaktykę położoną w odległych od Ziemi regionach, gdzie większość galaktyk jest mniejsza.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.