
W przyszłej dekadzie powstaną drapacze chmur z... drewna?
By
KopalniaWiedzy.pl, in Technologia
-
Similar Content
-
By KopalniaWiedzy.pl
Naukowcy z Worcester Polytechnic Institute (WPI) wykorzystali enzym obecny w czerwonych ciałkach krwi do stworzenia samonaprawiającego się betonu, który jest czterokrotnie bardziej wytrzymały niż tradycyjny beton. Ich osiągnięcie nie tylko wydłuży żywotność betonowej infrastruktury, ale pozwoli też na uniknięcie kosztownych napraw.
Wykorzystany enzym reaguje na obecność dwutlenku węgla, tworząc wraz z nim kryształy węglanu wapnia, naśladujące strukturę, wytrzymałość i inne właściwości betonu. Pojawiające się pęknięcia są więc samoistnie łatane, struktura ulega więc naprawie, zanim pojawią się większe problemy.
Jeśli niewielkie pęknięcia betonu są automatycznie naprawiane w miejscu pojawienia się, nie dojdzie do ich powiększenia się i pojawienia się problemów, które będą wymagały naprawy lub wymiany konstrukcji. Brzmi to jak z powieści science-fiction, jednak to prawdziwe rozwiązanie poważnego problemu budowlanego, mówi profesor Nima Rahbar, główny autor artykułu opublikowanego na łamach Applied Materials Today.
Rahbar i jego zespół wykorzystali enzymy z grupy anhydraz węglanowych (CA), które odpowiadają za szybki transport dwutlenku węgla z komórek do krwi. CA został dodany do cementu. Działa on jak katalizator, który w połączeniu z CO2 tworzy kryształy węglanu wapnia. Ich struktura jest podobna do struktury betonu. Gdy w betonie pojawiają się pęknięcia, dochodzi do kontaktu enzymu z atmosferycznym CO2 i wypełniania pęknięcia.
Szukaliśmy naturalnego składnika, który powoduje najszybszy transfer CO2 i okazał się nim enzym CA. Enzymy w naszych organizmach reagują niezwykle szybko, mogą więc być używane do naprawy i wzmacniania struktur betonowych, mówi Rahbar. Nowy beton w ciągu 24 godzin naprawia pęknięcia w skali milimetrów. To dziesiątki razy szybciej niż inne proponowane rozwiązania tego typu.
« powrót do artykułu -
By KopalniaWiedzy.pl
Firma Sumitomo Forestry i Uniwersytet w Kioto pracują nad wykorzystaniem drewna do... budowy satelitów. W ramach tych prac różne rodzaje drewna będą testowane w ekstremalnych warunkach. Japończycy mają nadzieję, że w ciągu najbliższych lat będą w stanie zaproponować nowy materiał dla satelitów.
Obecnie satelity buduje się m.in. z aluminium i jego stopów oraz z kevlaru. Materiały te są bowiem w stanie przetrwać zarówno ekstremalne temperatury, jak i promieniowanie obecne poza ziemską atmosferą. Ta duża wytrzymałość materiałów ma jednak też i negatywne strony. Nad naszymi głowami krążą tysiące nieużywanych satelitów, a na orbicie okołoziemskiej rośnie liczba odpadów, które stwarzają coraz większe zagrożenie dla znajdujących się tam urządzeń i ludzi. Jakby jeszcze tego było mało, gdy nieużywany satelita wchodzi w atmosferę ziemską, aluminium rozpada się na setki i tysiące małych kawałków, które przez wiele lat mogą krążyć w górnych warstwach atmosfery.
Dlatego też japońscy inżynierowie chcą sprawdzić, czy do budowy satelitów można użyć drewna. Główną korzyścią z wykorzystania drewna jest fakt, że całkowicie spala się ono po wejściu w atmosferę. To jednak nie wszystko. Drewno przepuszcza fale elektromagnetyczne. A to oznacza, że anteny mogłyby być umieszczane wewnątrz satelitów, co uprościłoby ich konstrukcję oraz wynoszenie w przestrzeń kosmiczną.
Specjaliści z Sumitomo Forestry i Uniwersytetu w Kioto przypuszczają, że w 2023 roku będą mieli produkt gotowy do testów.
« powrót do artykułu -
By KopalniaWiedzy.pl
Naukowcy z amerykańskiego Laboratorium Wirusologii Narodowego Instytutu Alergii i Chorób Zakaźnych, Uniwersytetu Kalifornijskiego w Los Angeles, Uniwersytetu Princeton, Centrów Zapobiegania i Kontroli Chorób (CDC) oraz Narodowych Instytutów Zdrowia, określili czas przetrwania koronawirusa SARS-CoV-2 na różnych powierzchniach i w aerozolach. Z ich badań wynika, że jest on podobny, co czas przetrwania SARS-CoV-1, który wywołał epidemię SARS przed kilkunastu laty.
Ogólnie rzecz biorąc, stabilność SARS-CoV-2 i SARS-CoV-1 jest bardzo podobna. Stwierdziliśmy, że aktywny wirus może być obecny w aerozolach do 3 godzin po aerozolizacji, do 4 godzin na miedzi, do 24 godzin na kartonie i do 2-3 dni na plastiku i stali nierdzewnej. Oba wirusy wykazywały podobny okres półtrwania w aerozolach, gdzie mediana wynosiła około 2,7 godziny. Oba wykazują dość długi czas przetrwania na stali nierdzewnej i polipropylenie w porównaniu z miedzią i kartonem. Mediana okresu półtrwania SARS-CoV-2 wynosi 13 godzin na stali i 16 godzin na polipropylenie. Wyniki naszych badań wskazują, że droga transmisji przez aerozole i powierzchnie jest możliwa, gdyż wirus pozostaje aktywny w aerozolach przez wiele godzin, a na powierzchniach przez wiele dni – czytamy w artykule Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1 [PDF]
Naukowcy zauważają, że stabilność wirusa w aerozolach i na powierzchniach ma bezpośredni wpływ na ryzyko zarażenia. Obie te drogi zarażenia odegrały główną rolę podczas dwóch poprzednich epidemii koronawirusów, SARS i MERS, z tym, że w przypadku SARS prawdopodobnie główną drogą zarażenia były aerozole.
Przeprowadzone właśnie szczegółowe analizy aktywności najnowszego koronawirusa wykazały, że w ciągu trzech godzin po aerozolizacji liczba zdolnych do zarażania wirusów spada z 103,5 do 102,7. Najnowszy koronawirus jest zaś najbardziej stabilny na polipropylenie, gdzie po 72 godzinach liczba aktywnych wirusów spadła z 103,7 do 100,6, oraz na stali nierdzewnej, gdzie do takiego samego spadku dochodzi w ciągu 48 godzin. Z kolei po nałożeniu wirusa na powierzchnię miedzianą obecności aktywnych wirusów nie wykrywano po 4 godzinach, a po nałożeniu na karton wirusów nie stwierdzono tam po 24 godzinach.
Uczeni stwierdzili, że nie ma statystycznie istotnej różnicy pomiędzy okresem przetrwania SARS-CoV-2 i SARS-CoV-1 na różnych powierzchniach i w aerozolach. Skoro tak, to do wyjaśnienia pozostaje zagadka, dlaczego obecny koronawirus (SARS-CoV-2) wywołał epidemię na znacznie większą skalę. Wiele różnych czynników może wchodzić tutaj w grę. Prawdopodobnie najnowszym koronawirusem możemy zarazić się od osób niewykazujących objawów, co ogranicza skuteczność kwarantanny. Mogą istnieć też różnice w ilości wirusów potrzebnych do wywołania zakażenia. Inne możliwe czynniki to stabilność wirusa w śluzie i jego odporność na takie czynniki jak temperatura i wilgotność.
Autorzy obecnych badań właśnie zaczynają eksperymenty, które pozwolą określić, jak SARS-CoV-2 radzi sobie w różnych warunkach atmosferycznych i różnych środowiskach, takich jak w wydzielinie z nosa, ślinie czy kale.
« powrót do artykułu -
By KopalniaWiedzy.pl
Już wkrótce elektrownia węglowa Dry Fork znajdująca się w pobliżu miasteczka Gillette w stanie Wyoming będzie wykorzystywała dwutlenek węgla do produkcji materiałów budowlanych. W marcu w elektrowni rozpoczyna się program pilotażowy, w ramach którego CO2 będzie zmieniane w betonowe bloczki.
Eksperyment prowadzony będzie przez naukowców z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA). Przez try miesiące każdego dnia będą oni odzyskiwali 0,5 tony dwutlenku węgla i wytwarzali 10 ton betonu. To pierwszy system tego typu. Chcemy pokazać, że można go skalować, mówi profesor Gaurav Sant, który przewodzi zespołowi badawczemu.
Carbon Upcycling UCLA to jeden z 10 zespołów biorących udział a ostatnim etapie zawodów NRG COSIA Carbon XPrize. To ogólnoświatowe zawody, których uczestnicy mają za zadanie opracować przełomową technologię pozwalającą na zamianę emitowanego do atmosfery węgla na użyteczny materiał.
W Wyoming są jeszcze cztery inne zespoły, w tym kanadyjski i szkocki. Pozostałych pięć drużyn pracuje w elektrowni gazowej w Kanadzie. Wszyscy rywalizują o główną nagrodę w wysokości 7,5 miliona dolarów. Zawody zostaną rozstrzygnięte we wrześniu.
Prace UCLA nad nową technologią rozpoczęto przed około 6laty, gdy naukowcy przyjrzeli się składowi chemicznemu... Wału Hadriana. Ten wybudowany w II wieku naszej ery wał miał bronić Brytanii przed najazdami Piktów.
Rzymianie budowali mur mieszając tlenek wapnia z wodą, a następnie pozwalając mieszaninie na absorbowanie CO2 z atmosfery. W ten sposób powstawał wapień. Proces taki trwa jednak wiele lat. Zbyt długo, jak na współczesne standardy. Chcieliśmy wiedzieć, czy reakcje te uda się przyspieszyć, mówi Guarav Sant.
Rozwiązaniem problemu okazał się portlandyt, czyli wodorotlenek wapnia. Łączy się go z kruszywem budowlanym i innymi materiałami, uzyskując wstępny materiał budowlany. Następnie całość trafia do reaktora, gdzie wchodzi w kontakt z gazami z komina elektrowni. W ten sposób szybko powstaje cement. Sant porównuje cały proces do pieczenia ciastek. Mamy oto bowiem mokre „ciasto”, które pod wpływem temperatury i CO2 z gazów kominowych zamienia się w użyteczny produkt.
Technologia UCLA jest unikatowa na skalę światową, gdyż nie wymaga kosztownego etapu przechwytywania i oczyszczania CO2. To jedyna technologia, która bezpośrednio wykorzystuje gazy z komina.
Po testach w Wyoming cała instalacja zostanie rozmontowana i przewieziona do National Carbon Capture Center w Alabamie. To instalacja badawcza Departamentu Energii. Tam zostanie poddana kolejnym trzymiesięcznym testom.
Na całym świecie wiele firm i grup naukowych próbuje przechwytywać CO2 i albo go składować, albo zamieniać w użyteczne produkty. Jak wynika z analizy przeprowadzonej przez organizację Carbon180, potencjalna wartość światowego rynku odpadowego dwutlenku węgla wynosi 5,9 biliona dolarów rocznie, w tym 1,3 biliona to produkty takie jak cementy, asfalty i kruszywa budowlane. Zapotrzebowanie na takie materiały ciągle rośnie, a jednocześnie coraz silniejszy akcent jest kładziony na redukcję ilości węgla trafiającego do atmosfery. To zaś tworzy okazję dla przedsiębiorstw, które mogą zacząć zarabiać na przechwyconym dwutlenku węgla.
Cement ma szczególnie duży ślad węglowy, gdyż jego produkcja wymaga dużych ilości energii. Każdego roku na świecie produkuje się 4 miliardy ton cementu, a przemysł ten generuje około 8% światowej emisji CO2. Przemysł cementowy jest tym, który szczególnie trudno zdekarbonizować, brak więc obecnie efektywnych rozwiązań pozwalających na zmniejszenie emisji węgla. Technologie wykorzystujące przechwycony CO2 mogą więc wypełnić tę lukę.
« powrót do artykułu -
By KopalniaWiedzy.pl
W budownictwie od dawna wykorzystuje się materiały pochodzenia biologicznego, np. drewno. Gdy się ich używa, nie są już jednak żywe. A gdyby tak stworzyć żyjący budulec, który jest w stanie się rozrastać, a przy okazji ma mniejszy ślad węglowy? Naukowcy nie poprzestali na zadawaniu pytań i zabrali się do pracy, dzięki czemu uzyskali beton i cegły z bakteriami.
Zespół z Uniwersytetu Kolorado w Boulder podkreśla, że skoro udało się utrzymać przy życiu pewną część bakterii, żyjące, i to dosłownie, budynki nie są wcale tylko i wyłącznie pieśnią przyszłości.
Pewnego dnia takie struktury będą mogły, na przykład, same zasklepiać pęknięcia, usuwać z powietrza niebezpieczne toksyny, a nawet świecić w wybranym czasie.
Na razie technologia znajduje się w powijakach, ale niewykluczone, że kiedyś żyjące materiały poprawią wydajność i ekologiczność produkcji materiałów budowlanych, a także pozwolą im wyczuwać i wchodzić w interakcje ze środowiskiem - podkreśla Chelsea Heveran.
Jak dodaje Wil Srubar, obecnie wytworzenie cementu i betonu do konstruowania dróg, mostów, drapaczy chmur itp. generuje blisko 6% rocznej światowej emisji dwutlenku węgla.
Wg Srubara, rozwiązaniem jest "zatrudnienie" bakterii. Amerykanie eksperymentowali z sinicami z rodzaju Synechococcus. W odpowiednich warunkach pochłaniają one CO2, który wspomaga ich wzrost, i wytwarzają węglan wapnia (CaCO3).
Naukowcy wyjaśnili, w jaki sposób uzyskali LBMs (od ang. living building material, czyli żyjący materiał), na łamach pisma Matter. Na początku szczepili piasek żelatyną, pożywkami oraz bakteriami Synechococcus sp. PCC 7002. Wybrali właśnie żelatynę, bo temperatura jej topnienia i przejścia żelu w zol wynosi ok. 37°C, co oznacza, że jest kompatybilna z temperaturami, w jakich sinice mogą przeżyć. Poza tym, schnąc, żelatynowe rusztowania wzmacniają się na drodze sieciowania fizycznego. LBM trzeba schłodzić, by mogła się wytworzyć trójwymiarowa hydrożelowa sieć, wzmocniona biogenicznym CaCO3.
Przypomina to nieco robienie chrupiących ryżowych słodyczy, gdy pianki marshmallow usztywnia się, dodając twarde drobinki.
Akademicy stworzyli łuki, kostki o wymiarach 50x50x50 mm, które były w stanie utrzymać ciężar dorosłej osoby, i cegły wielkości pudełka po butach. Wszystkie były na początku zielone (sinice to fotosyntetyzujące bakterie), ale stopniowo brązowiały w miarę wysychania.
Ich plusem, poza wspomnianym wcześniej wychwytem CO2, jest zdolność do regeneracji. Kiedy przetniemy cegłę na pół i uzupełnimy składniki odżywcze, piasek, żelatynę oraz ciepłą wodę, bakterie z oryginalnej części wrosną w dodany materiał. W ten sposób z każdej połówki odrośnie cała cegła.
Wyliczenia pokazały, że w przypadku cegieł po 30 dniach żywotność zachowało 9-14% kolonii bakteryjnych. Gdy bakterie dodawano do betonu, by uzyskać samonaprawiające się materiały, wskaźnik przeżywalności wynosił poniżej 1%.
Wiemy, że bakterie rosną w tempie wykładniczym. To coś innego niż, na przykład, drukowanie bloku w 3D lub formowanie cegły. Gdybyśmy mogli uzyskiwać nasze materiały [budowlane] na drodze biologicznej, również bylibyśmy w stanie produkować je w skali wykładniczej.
Kolejnym krokiem ekipy jest analiza potencjalnych zastosowań platformy materiałowej. Można by dodawać bakterie o różnych właściwościach i uzyskiwać nowe materiały z funkcjami biologicznymi, np. wyczuwające i reagujące na toksyny w powietrzu.
Budowanie w miejscach, gdzie zasoby są mocno ograniczone, np. na pustyni czy nawet na innej planecie, np. na Marsie? Czemu nie. W surowych środowiskach LBM będą się sprawować szczególnie dobrze, ponieważ do wzrostu wykorzystują światło słoneczne i potrzebują bardzo mało materiałów egzogennych. [...] Na Marsa nie zabierzemy ze sobą worka cementu. Kiedy wreszcie się tam wyprawimy, myślę, że naprawdę postawimy na biologię.
Badania sfinansowała DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych).
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.