Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Dwa polskie projekty w finale konkursu Mars Colony Prize

Recommended Posts

Dwa zespoły studentów z Politechniki Wrocławskiej – które przygotowały projekty marsjańskich osiedli – dostały się do światowego finału konkursu Mars Colony Prize. Swoje pomysły na to, jak może wyglądać samowystarczalna kolonia na Marsie, studenci przedstawią w Kalifornii w październiku.

Spośród 100 projektów marsjańskich kolonii nadesłanych z całego świata organizacja Mars Society wybrała do finału 10 - w tym aż dwa projekty studentów z Politechniki Wrocławskiej: „Ideacity” i „Twardowsky”. Ich autorzy w połowie października szczegółowo zaprezentują swoje rozwiązania w USA. O sukcesie wrocławskich studentów poinformowano na stronie PWr.

Organizator konkursu – Mars Society – oczekiwał od uczestników konkursu projektu samowystarczalnej marsjańskiej kolonii dla tysiąca osób. Osiedle powinno importować jak najmniej towarów z Ziemi, a jednocześnie mieć się z czego utrzymywać. Musi samo wytwarzać jedzenie dla swoich mieszkańców, podobnie jak materiały budowlane potrzebne do stopniowego rozbudowywania się oraz m.in. energię, ubrania, pojazdy, maszyny i wszystkie produkty codziennego użytku – jak w typowym ziemskim mieście.

PWr poinformowała, że projektanci musieli wziąć pod uwagę wiele ograniczeń wynikających z warunków panujących na Czerwonej Planecie – jak choćby mniejszą żyzność marsjańskiej gleby w porównaniu do ziemskiej czy wahania temperatur od minus 140 st. C. do nawet plus 30.

W konkursie oceniano m.in. projekt techniczny i opis, jakie systemy zostaną wykorzystane w kolonii i jak będą działały. Liczyły się też kwestie ekonomiczne i samowystarczalność bazy, a także estetyka kolonii oraz to, jak rozwiązano zagadnienia społeczne, kulturalne, polityczne i organizacyjne.

Podczas finału każdy zespół dostanie po 20 minut, aby zaprezentować projekt jury oraz pięć minut na odpowiedzi na ich pytania.

Pierwszy z finałowych projektów – „Ideacity” – stworzyła grupa Innspace. Miasto z ich projektu mieści się na planie sześciokąta o boku 400 m. Bliżej centrum studenci zaprojektowali budynki przeznaczone do codziennego funkcjonowania, natomiast na zewnętrznej części miasta ulokowali zabudowania przemysłowe. Większość zabudowy znajduje się pod ziemią, co pozwala chronić mieszkańców przed promieniowaniem.

Postawiliśmy duży nacisk na integrację społeczną. Dzięki temu mieszkańcy kolonii będą mogli dobrze się poznać i poczuć wspólnotą, co znacząco wpłynie na jakość ich życia. Największą część obszaru zajmą uprawy, będące źródłem żywności dla całej kolonii. Kolejną rozbudowaną strefą będzie ta przemysłowa, na którą złożą się magazyny, produkcja, fabryki i oczyszczalnie. Ważnym punktem będzie ośrodek badawczy, połączony z placówkami medycznymi. Uwzględniliśmy również m.in. hotel, dom modlitw, placówki edukacyjne, centrum sportowe i ogrody - opowiada o projekcie Justyna Pelc cytowana na stronie PWr.

Studenci proponują, by większość budynków zbudowały zrobotyzowane drukarki 3D, a do produkcji użyły marsjańskiej gleby, regolitu, czyli surowca, którego na Czerwonej Planecie jest pod dostatkiem.

Projektanci „Ideacity” zwracają uwagę, że kluczowym aspektem życia na Marsie jest monitoring procesów życiowych oraz aspektów psychologicznych życia osadników.

Drugi z projektów, który dostał się do finału, to „Twardowsky”. Pracowało nad nim 19 osób - studenci i doktoranci skupieni wokół inicjatywy badawczej Space is More i Projektu Scorpio z pomocą kilku członków z Koła Naukowego MOS i inicjatywy LabDigiFab.

„Twardowsky” – jak opisują przedstawiciele PWr – dzieliłby się na pięć jednostek połączonych wspólnym „hubem” – placem głównym, gdzie znajdowałyby się miejsca związane ze spędzaniem czasu wolnego i rozrywką. Przestrzeń miałaby układ tarasowy. Mieszkania kolonizatorów sąsiadowałyby tam m.in. z restauracjami, kafejkami, sklepami czy placówkami medycznymi.

Mieszkańcy byliby tam podzieleni na grupy po dwieście osób. W ten sposób mają szansę się poznać, nie być anonimowymi w tłumie – wyjaśnia członek zespołu Orest Savytskyi.

W naszej kolonii zaprojektowaliśmy dużo otwartych terenów z zielenią, a do tego wodospady, co razem tworzy miejsca, które uspokajają i koją – mówi członkini zespołu Natalia Ćwilichowska. Tłumaczy, że w każdej jednostce znajdowałyby się rośliny, z których ma powstawać żywność. Wytwarzanie żywności w „Twardowskym” opierałoby się o akwaponikę, czyli połączenie hodowli ryb w wielkich akwariach z uprawą roślin w wodzie.

Kolonia na dużą skalę zajmowałaby się recyklingiem produktów. Np. z włókien celulozowych wytwarzałaby tam ubrania, a z innych odpadków roślinnych… marsjańską wódkę, którą – jak proponuje zespół z PWr – mieszkańcy Marsa eksportowaliby na Ziemię.

Lista finalistów dostępna jest na stronie Mars Society.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      NASA kończy prace koncepcyjne nad drugą częścią Mars Sample Return Program, którego celem jest przywiezienie na Ziemię próbek z Marsa. Pierwszą część stanowi misja łazika Perseverance, który od 2020 roku bada Marsa i zbiera próbki. Za 10 lat mają one trafić na Ziemię. Jednak, by je przywieźć, konieczne będzie zorganizowanie kolejnej misji.
      Opracowana koncepcja opiera się na najnowszych danych z łazika Perseverance i jego przewidywanej wytrzymałości oraz na sukcesie marsjańskiego śmigłowca Ingenuity. Śmigłowiec odbył już 29 lotów i przetrwał o rok dłużej, niż zakładano.
      Plan przywiezienia próbek na Ziemię zakłada, że to Perseverance zawiezie je do lądownika Sample Retrieval Lander, na pokładzie którego znajdzie się rakieta Mars Ascent Vehicle oraz zbudowane przez Europejską Agencję Kosmiczną Sample Transfer Arm. Europejskie ramię przeładuje przywiezione próbki z Perseverance do Mars Ascent Vehicle. To znaczna zmiana w porównaniu z pierwotną koncepcją. Zakładała ona, że jeden lądownik dostarczy na Czerwoną Powierzchnię rakietę Mars Ascent Vehicle, a drugi – osobny łazik Sample Fetch Rover odpowiedzialny za zebranie próbek.
      Na pokładzie Sample Retrieval Lander znajdą się też dwa śmigłowce bazujące na architekturze Ingenuity. Zostaną one wykorzystane, gdyby z jakichś powodów Perseverance nie mógł dostarczyć próbek. Wówczas próbki na pokład lądownika przywiozą śmigłowce. Następnie z powierzchni Marsa wystartuje Mars Ascent Vehicle, który dostarczy je do czekającego na orbicie pojazdu Earth Return Orbiter. Ten zaś przywiezie je na Ziemię.
      W tej chwili plan przewiduje, że Earth Return Orbiter zostanie wystrzelony jesienią 2027 roku, a Sample Retrieval Lander wiosną 2028. Próbki mają trafić na Ziemię w roku 2033.
      W październiku rozpocznie się faza projektowa misji, która potrwa około 12 miesięcy. W tym czasie powinny powstać technologie oraz prototypy głównych elementów misji.
      Od 18 lutego 2021 roku łazik Perseverance zebrał 11 próbek gruntu i 1 próbkę atmosfery Marsa. Dostarczenie ich na Ziemię pozwoli na przeprowadzenie badań za pomocą instrumentów, które są zbyt duże i skomplikowane, by wysłać je na Marsa. Ponadto marsjańskie próbki będą mogły badać kolejne pokolenia naukowców, podobnie ja ma to miejsce z próbkami księżycowymi przywiezionymi w ramach programu Apollo.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Politechniki Wrocławskiej stoją na czele międzynarodowej grupy badawczej prowadzącej wraz z partnerami biznesowymi projekt, którego celem jest sprawdzenie możliwości pozyskiwania cennych metali z wód podziemnych. Uczeni zbadają solanki  znajdujące się na terenie Polski, Czech, Słowacji, Węgier, Hiszpanii i Portugalii. Projektem BrineRIS kieruje dr Magdalena Worsa-Kozak z Wydziału Geoinżynierii, Górnictwa i Geologii PWr.
      Uczeni przeprowadzą analizy 12 wybranych źródeł i będą badali możliwość pozyskiwania z nich np. litu jedną z trzech rozwijanych właśnie technologii. Lit jest tutaj szczególnie pożądanym metalem. Wykorzystuje się go m.in. do budowy akumulatorów samochodowych. W związku z rosnącą popularnością samochodów elektrycznych popyt na lit może do końca dekady wzrosnąć nawet pięciokrotnie.
      Obecnie znaczną część litu pozyskuje się ze zbiorników solankowych na wysoko położonych obszarach Boliwii, Argentyny czy Chile. Najpierw bogate w lit wody są pompowane do stawów ewaporacyjnych, tam przez kilka miesięcy woda odparowuje, następnie z osadu pozyskiwany jest węglan litu, który poddaje się kolejnym obróbkom. Jednak taki sposób pozyskiwania litu ma negatywny wpływ na środowisko naturalne. Stawy zajmują olbrzymie powierzchnie, prowadzi to też do obniżenia poziomu wód gruntowych z powodu wypompowywania solanek. Kolejnym problemem są środki chemiczne używane w tej metodzie.
      Dlatego też w wielu miejscach prowadzi się prace nad technologiami bezpośredniej ekstrakcji litu. Są one niezależne od pogody, ale problem stanowi cena energii elektrycznej używanej w tej metodzie.
      Rozwiązaniem może być sięgnięcie do solanek geotermalnych. Można by z nich uzyskiwać lit, a cały proces byłby zasilany energią pozyskiwaną z samej solanki. W ramach projektu BrineRIS analizowane będą dane dotyczące występowania solanek oraz ich składu, ze szczególnym uwzględnieniem litu, strontu i baru. Obecnie te dane są bardzo rozproszone. Nie ma jednego miejsca, w którym zainteresowany przedsiębiorca mógłby przejrzeć przekrojowo takie informacje. Do tego część np. badań składu chemicznego solanek została przeprowadzona w ramach projektów naukowych czy inwestycyjnych związanych z innymi tematami i te dane nie zostały nigdy przeanalizowane pod kątem odzysku pierwiastków, ani w jakiejkolwiek formie upublicznione, mówi dr Worsa-Kozak.
      Ponadto przeprowadzona zostanie analiza solanek pod kątem pozyskania z nich litu za pomocą jednej z trzech technologii. Elektrolitycznymi metodami pozyskiwania tego pierwiastka zajmą się naukowcy z Uniwersytetu Gandawskiego, technologią adsorbcyjną specjaliści z fińskiej służby GTK, a ekstrakcją rozpuszczalnikową GTK we współpracy z Politechniką Wrocławską.
      Będziemy także analizować te solanki, które mają niższe temperatury, czyli np. około 40 czy 60 stopni C. i w związku z tym nie nadają się do produkcji energii elektrycznej. Mogą natomiast być odpowiednie do produkcji ciepła i dlatego naukowcy z TU Freiberg będą klasyfikować te solanki, z których ciepło można byłoby wykorzystywać do poprawy samego procesu technologicznego, np. do podgrzania chłodniejszej wody i poprawy efektywności testowanych technologii, zmniejszając ich koszty, dodaje kierująca projektem.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Łazik Perseverance wylądował na Marsie po trwającej ponad pół roku podróży. W tym czasie był narażony na oddziaływanie dużych dawek promieniowania kosmicznego, które dodatkowo mogło zostać gwałtownie zwiększone przez koronalne wyrzuty masy ze Słońca. Na takie właśnie szkodliwe dla zdrowia promieniowanie narażeni będą astronauci podróżujący na Marsa. W przeciwieństwie do załogi Międzynarodowej Stacji Kosmicznej nie będą oni chronieni przez ziemską magnetosferę. Dlatego też wszelkie metody skrócenia podróży są na wagę zdrowia i życia.
      Emmanuel Duplay i jego koledzy z kanadyjskiego McGill University zaprezentowali na łamach Acta Astronautica interesującą koncepcję laserowego systemu napędowy, który mógłby skrócić załogową podróż na Marsa do zaledwie 45 dni.
      Pomysł na napędzanie pojazdów kosmicznych za pomocą laserów nie jest niczym nowym. Jego olbrzymią zaletą jest fakt, że system napędowy... pozostaje na Ziemi. Jedną z rozważanych technologii jest wykorzystanie żagla słonecznego przymocowanego do pojazdu. Żagiel taki wykorzystywałby ciśnienie fotonów wysyłanych w jego kierunku z laserów umieszczonych na Ziemi. W ten sposób można by rozpędzić pojazd do nieosiągalnych obecnie prędkości.
      Jednak system taki może zadziałać wyłącznie w przypadku bardzo małych pojazdów. Dlatego Duplay wraz z zespołem proponują rozwiązanie, w ramach którego naziemny system laserów będzie rozgrzewał paliwo, na przykład wodór, nadając pęd kapsule załogowej.
      Pomysł Kanadyjczyków polega na stworzeniu systemu laserów o mocy 100 MW oraz pojazdu załogowego z odłączanym modułem napędowym. Moduł składałby się z olbrzymiego lustra i komory wypełnionej wodorem. Umieszczone na Ziemi lasery oświetlałby lustro, które skupiałoby światło na komorze z wodorem. Wodór byłby podgrzewany do około 40 000 stopni Celsjusza, gwałtownie by się rozszerzał i uchodził przez dyszę wylotową, nadając pęd kapsule załogowej. W ten sposób, w ciągu kilkunastu godzin ciągłego przyspieszania kapsuła mogłaby osiągnąć prędkość około 14 km/s czyli ok. 50 000 km/h, co pozwoliłoby na dotarcie do Marsa w 45 dni. Sam system napędowy, po osiągnięciu przez kapsułę odpowiedniej prędkości, byłby od niej automatycznie odłączany i wracałby na Ziemię, gdzie można by go powtórnie wykorzystać.
      Drugim problemem, obok stworzenia takiego systemu, jest wyhamowanie pojazdu w pobliżu Marsa. Naukowcy z McGill mówią, że można to zrobić korzystając z oporu stawianego przez atmosferę Czerwonej Planety, jednak tutaj wciąż jest sporo niewiadomych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA do września przedłużyła misję marsjańskiego śmigłowca Ingenuity. W najbliższych miesiącach śmigłowiec będzie wspomagał łazik Perseverance w jego badaniach Jezero Crater. Jednocześnie będą prowadzone testy śmigłowca, które pomogą zaprojektować podobne urządzenia na potrzeby przyszłych marsjańskich misji. Ingenuity odbył już 21 lotów w atmosferze Marsa.
      Jeszcze mniej niż rok temu nie wiedzieliśmy, czy na Marsie możliwy jest kontrolowany lot statku powietrznego. Teraz chcemy zaangażować Ingenuity w drugą kampanię naukową Perseverance. Taka zmiana w tak krótkim czasie jest czymś niezwykłym i na stałe zapisze się w eksploracji przestrzeni kosmicznej, powiedział Thomas Zurbuchen, współdyrektor w Dyrektoriacie Misji Naukowych NASA.
      Od czasu swojego pierwszego lotu w kwietniu ubiegłego roku Ingenuity latał w płaskim łatwym terenie. Teraz otrzyma trudniejsze zadanie. Śmigłowiec będzie prowadził zwiad w wyschniętej delcie rzeki. Wznosi się ona na 40 metrów nad dnem krateru Jezero, jest pełna głazów, klifów, pochyłych zboczy i łach piasku. Takie ukształtowanie terenu jest bardzo atrakcyjne z naukowego punktu widzenia. Na powierzchni może znajdować się wiele interesujących utworów geologicznych.
      Jednak wszystkie te przeszkody terenowe mogą zagrozić misji łazika. Dlatego też Ingenuity będzie badał teren przed nim, pozwalając obsłudze naziemnej na wybranie optymalnej drogi. Pierwszym zadaniem Ingenuity będzie określenie, który z dwóch suchych kanałów rzecznych powinien wybrać Perseverance. Śmigłowiec nie tylko będzie dokonywał zwiadu. Ma również identyfikować interesujące cele naukowe, których badaniem mógłby zająć się łazik. NASA nie wyklucza, że może wykorzystać Ingenuity do sfotografowania struktur geologicznych znajdujących się poza zasięgiem łazika lub do poszukiwania miejsca lądowania dla misji Mars Sample Return.
      W ciągu ostatnich miesięcy specjaliści z NASA wielokrotnie aktualizowali oprogramowanie śmigłowca. Zmniejszyli dzięki temu liczbę błędów nawigacyjnych, znieśli też ograniczenie limit wysokości lotu wynoszący dotychczas 15 metrów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Troje studentów architektury Politechniki Wrocławskiej (PWr) przygotowało koncepcję rekonstrukcji jednej z najbardziej zagadkowych budowli na Dolnym Śląsku - średniowiecznego zamku widma w Bardzie.
      W ramach zajęć rekonstrukcją warowni zajęli się Barbara Całko, Magdalena Ambroszko i Michał Grzywaczewski. Studenci pracowali pod kierunkiem dr. Rolanda Mruczka.
      Do czasów współczesnych z zamku w Bardzie zachowały się jedynie fragmenty partii fundamentowych, niewielkie pozostałości murów obronnych i odkopana półkolista klatka schodowa prowadząca do podpiwniczenia. Jak wyjaśnia Całko, bazując tylko na tym, trudno byłoby odtworzyć, jak warownia wyglądała. Stworzenie koncepcji jej bryły wymagało więc gruntownego i krytycznego przejrzenia materiałów źródłowych, których nie było zbyt wiele, a przede wszystkim szukania poszlak, wskazówek i podobieństw wśród innych obiektów o takim samym przeznaczeniu i chronologii. Studenci prowadzili swego rodzaju śledztwo, a w jego trakcie konsultowali się z naukowcami z uczelni.
      Oprócz tego Całko, Ambroszko i Grzywaczewski udali się osobiście do Barda, by przeprowadzić inwentaryzację i wykonać fotografie.
      Jedna z najbardziej zagadkowych budowli na Dolnym Śląsku
      Opisywany zamek powstał na początku XIV w. Wydaje się, że wykorzystywano go do ochrony strefy nadgranicznej. Mógł też pełnić funkcję książęcej komory celnej.
      Prawdopodobnie warownia ucierpiała podczas wojen husyckich. Pod koniec XVI w. ostatecznego zniszczenia dokonało trzęsienie ziemi. W pewnym momencie budowla stała się źródłem materiałów budowlanych dla innych obiektów w okolicy. Z biegiem lat zniknęła bez śladu...
      Aż do 1982 r. nie wiedziano na pewno, gdzie dokładnie [zamek] się znajdował. Sprawy nie ułatwiał fakt, że dopiero w 1934 r. dr Clausnitzer odkrył wymieniane w 1096 i 1155 r. dwa grody kasztelańskie w Bardzie, dość szczegółowo rozpoznane archeologicznie w latach 80. XX w. Istnienie trzeciego obiektu obronnego uznano za mało prawdopodobne, zwłaszcza że zamek nie był wymieniany przez źródła historyczne. Tymczasem już w końcu XIX w. badacz Oscar Vug znalazł na Górze Bardzkiej zagłębienie, które uznano za studnię. Jej mit do dzisiaj jest powielany. Niewykluczone, że było to po prostu wnętrze zamkowej wieży [obronnej], której kolisty fundament o średnicy 10,1 m odkryto w całości dopiero w trakcie wykopalisk dzięki archeologom Czesławowi Francke i Jerzemu Lodowskiemu - opowiada dr Mruczek.
      Koncepcje rekonstrukcji zamku w Bardzie
      Autorem pierwszej koncepcji rekonstrukcji jest uczestniczący w wykopaliskach prof. Ernest Niemczyk z PWr; datuje się ona na lata 80. XX w. Później powstawały też inne wizje warowni. W Muzeum Miejskim Wrocławia znajduje się makieta zaprojektowana przez muzealnego archeologa dr. Pawła Maderę i wykonana przez inną pracownicę Muzeum Annę Gąsior. Konsultantem projektu był dr Artur Boguszewicz z Uniwersytetu Wrocławskiego.
      Model bryłowy naszych studentów spotkał się z dużym zainteresowaniem i bardzo dobrym przyjęciem w środowisku archeologów i architektów, bo niejako „przywrócił zamek do życia”. Sprawił, że obiekt zmaterializował się. Rekonstrukcja studentów jest bardzo fotograficzna, nie trzeba sobie zbyt wiele „dowyobrażać”. Studenci po raz pierwszy podjęli też próbę odtworzenia sąsiedniego podzamcza - podkreśla dr Mruczek.
      Studencki model bryłowy
      Ponieważ materiałów źródłowych było mało, a z zamku również niewiele pozostało, studenci musieli się przyjrzeć podobnym budowlom z tego samego okresu: zamkom w Będzinie, Cisach, Frymburku, Wleniu i Bolesławcu nad Prosną.
      Wg nich, zamek typu sasko-heskiego składał się z wieży mieszkalnej o wysokości ~15 m, bergfriedu (czyli wieży ostatecznej obrony) o wysokości ok. 22 m, pięciu pomieszczeń towarzyszących i muru obwodowego z furtą.
      Całko, Ambroszko i Grzywaczewski przyjęli 5 najbardziej prawdopodobnych rozwiązań układu przestrzennego zamku. Rozważono 2 wersje bergfriedu (wieży typu stołp): 1) z hurdycją, czyli drewnianą galerią nadwieszoną u szczytu, lub 2) blankami, in. krenelażem. Studenci założyli, że jedynym wejściem do zamku właściwego była furta od strony południowo-wschodniej; można ją było pokonać wyłącznie pieszo. Wg nich, mury obronne miały ok. 10 m wysokości i były wyposażone w przedpiersie z krenelażem. Uznaliśmy również, że mur obwodowy zamku musiał mieć przyporę, ponieważ postawiono go na skale i to w dodatku na stromym zboczu. W naszej koncepcji umieściliśmy ją tam, gdzie nachylenie terenu było największe – tłumaczy Całko.
      Jak napisano w komunikacie prasowym PWr, na zajęciach z metodologii badań naukowych inni studenci przygotowywali modele w formie wizualizacji dla zamków: w Bolkowie, we Wleniu, Chojnowie, na Ślęży, w Prochowicach, Grodźcu, zamków Chojnik, Cisy, Rogowiec, Radosno, Bolczów w Janowicach Wielkich, dworu obronnego w Sędziszowej koło Świerzawy oraz zamku lewobrzeżnego we Wrocławiu, kaplicy zamkowej w Legnicy i legnickiego zamku jako całości.
      Ćwierćwiecze archeologii architektury w praktyce
      Takie rekonstrukcje są tworzone już od ćwierćwiecza. Z inicjatywą praktycznych wyzwań dla młodych architektów-historyków i konserwatorów z zacięciem badawczym [...] wyszli profesorowie Jerzy Rozpędowski i Stanisław Medeksza, którzy zaczęli przygotowywać studentów i doktorantów do pracy badawczej w misjach archeologicznych w basenie Morza Śródziemnego.
      Początkowo w ramach zajęć studenci przygotowywali makiety kartonowe, w ostatnich latach, oprócz rekonstrukcji wirtualnych, coraz popularniejsze stają się zaś modele uzyskane za pomocą drukarek 3D.
      Warto zapoznać się z niektórymi pracami z lat ubiegłych, np. z rekonstrukcją zburzonego w 1956 r. budynku Starej Rzeźni Miejskiej (przy ul. Łaziennej we Wrocławiu), koncepcją przemian bryły Katedry św. Jana Chrzciciela we Wrocławiu (od XII do XIV w.) czy rekonstrukcją średniowiecznej Bramy Ziębickiej w Strzelinie.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...