Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Dimetylotryptamina (DMT), główny składnik psychodelicznego napoju ayahuasca, jest również naturalnie syntetyzowany w mózgu ssaków. Odkrycie zespołu z Michigan Medicine jest pierwszym krokiem w kierunku badania DMT w mózgach ludzi. Wyniki studium ukazały się w piśmie Scientific Reports.

DMT nie występuje wyłącznie w roślinach [takich jak Mimosa hostilis, Diplopterys cabrerana czy Psychotria viridis]. Można ją wykryć także u ssaków - podkreśla dr Jimo Borjigin, która przed skoncentrowaniem się na psychodelikach zajmowała się szyszynką (wbrew pozorom, ma to spore znaczenie).

W XVII w. Kartezjusz twierdził, że szyszynka jest siedzibą duszy. Nazywany przez niektórych trzecim okiem gruczoł długo był postrzegany jako tajemniczy, teraz wiadomo już jednak, że kontroluje produkcję melatoniny, która odgrywa ważną rolę w modulowaniu zegara biologicznego.

Przeglądając Internet pod kątem prowadzonych zajęć, Borjigin zauważyła, że spora rzesza ludzi nadal jest przekonana co do mistycznych mocy szyszynki. Źródłem tego wydaje się dokument przedstawiający prace Ricka Strassmana ze Szkoły Medycznej Uniwersytetu Nowego Meksyku, który w połowie lat 90. XX w. przeprowadził pewien eksperyment. Ochotnikom podano wtedy dożylnie DMT i gdy psychodelik przestał już działać, przeprowadzono z nimi wywiady. W filmie Strassman stwierdzał, że wg niego, szyszynka produkuje i wydziela DMT.

Powiedziałam do siebie: zaraz, zaraz, od lat zajmuję się szyszynką i nigdy o tym nie słyszałam. Zaintrygowana Borjigin skontaktowała się z Strassmanem i poprosiła o podanie źródeł/uzasadnienie tego stwierdzenia. Wtedy Strassman przyznał, że to tylko hipoteza. Niewiele myśląc, Borjigin zaproponowała współpracę i przetestowanie tego twierdzenia.

Gdyby DMT była endogenną monoaminą, można by ją wykryć za pomocą fluorometru. Naukowcy pobrali próbkę z szyszynki szczura i potwierdzili obecność DMT. Wyniki tego badania opublikowano w 2013 r.

Borjigin nie była jednak usatysfakcjonowana. Musiała się dowiedzieć, jak i gdzie DMT jest syntetyzowana. Jej student Jon Dean przeprowadził eksperyment z wykorzystaniem fluorescencyjnej hybrydyzacji in situ, FISH (od ang. fluorescent in situ hybridization), gdzie za pomocą fluorescencyjnych sond DNA w materiale genetycznym wycinka szuka się określonej sekwencji DNA.

Dzięki tej technice znaleźliśmy neurony z 2 enzymami koniecznymi do produkcji DMT. Występowały one nie tylko w szyszynce, ale i w innych częściach mózgu, w tym w korze nowej i hipokampie, które odpowiadają m.in. za uczenie i pamięć.

Zespół Borjigin zademonstrował także, że poziom DMT rośnie u niektórych szczurów doświadczających zatrzymania krążenia. W tym miejscu warto przypomnieć, że w artykule opublikowanym w sierpniu zeszłego roku naukowcy z Imperial College London napisali, że DMT stymuluje w mózgu zjawiska, które przypominają te związane z doświadczeniami z pogranicza śmierci (ang. near-death experiences, NDE).

Amerykanie chcą dalej badać funkcję naturalnego DMT. Nie mamy pojęcia, za co odpowiada. Odkryliśmy tylko neurony, które ją wytwarzają i wiemy, że stężenie produkowanej DMT przypomina poziomy innych neuroprzekaźników monoaminowych.


« powrót do artykułu

Share this post


Link to post
Share on other sites

To, co wiemy ściśle przynajmniej od lat '70 ubiegłego wieku, teraz wyskakuje jako news w onetowym stylu z niedowierzającą panią naukowiec-specjalistką od szyszynki. Trudne sprawy.

Share this post


Link to post
Share on other sites

Nie do końca. Zdziwienie uczonej pewnie wynika z dwóch rzeczy. Po pierwsze primo, z roli szyszynki, po drugie primo jego przyczyną mogły być zmieniające się kryteria naukowe. W 1976 roku rzeczywiście ukazała się praca naukowa omawiająca dowody na naturalne występowanie DMT w mózgach ssaków. Wówczas spełniało to wymagania stawiane przed dowodami naukowymi. Jednak z czasem dodano jeszcze kilka kryteriów (np. pojawiło się wymaganie zarejestrowania aktywności neurofizjologicznej z tym związanej). Więc to, co przed 40 laty uznano za dowody wystarczające, obecnie było uznawane za dowody niewystarczające. Sądzę, że stąd informacja o odkryciu.

PS.

Zmieniliśmy nieco tytuł i treść pierwszego akapitu, by odpowiednio podkreślić to, co jest właściwym przedmiotem odkrycia. :)

Share this post


Link to post
Share on other sites

Ciekawi mnie ta funkcja DMT - czyżby natura przejmowała się naszym cierpieniem podczas umierania? Troszkę to dziwne, więc pewnie to tylko zbieg okoliczności. chociaż... ;P

Share this post


Link to post
Share on other sites
2 godziny temu, Warai Otoko napisał:

Ciekawi mnie ta funkcja DMT - czyżby natura przejmowała się naszym cierpieniem podczas umierania? Troszkę to dziwne, więc pewnie to tylko zbieg okoliczności. chociaż... ;P

Może, w jakimś minimalnych dawkach wpływa na twórczość (strzelam), może bierze udział też w innych procesach "mózgowych" np. wiązanie pamięci kto wie (gdzieś mi się obiło o oczy, że też w trakcie snu się wytwarza).

Share this post


Link to post
Share on other sites
1 godzinę temu, Afordancja napisał:

Może, w jakimś minimalnych dawkach wpływa na twórczość (strzelam), może bierze udział też w innych procesach "mózgowych" np. wiązanie pamięci kto wie (gdzieś mi się obiło o oczy, że też w trakcie snu się wytwarza).

Z tym snem to mógłby być jakiś trop, przyjmując że umieranie jest częściowo do snu podobne. Może DMT wyłącza pewne obszary mózgu (DLPFC?) podczas snu, a podczas umierania z jakiegoś powodu odpala się ten sam proces tylko zmodyfikowany/silniejszy? 

Share this post


Link to post
Share on other sites
W dniu 1.07.2019 o 14:56, Warai Otoko napisał:

Z tym snem to mógłby być jakiś trop, przyjmując że umieranie jest częściowo do snu podobne. Może DMT wyłącza pewne obszary mózgu (DLPFC?) podczas snu, a podczas umierania z jakiegoś powodu odpala się ten sam proces tylko zmodyfikowany/silniejszy? 

Do napoju ayahuasca dodaje się inhibitory mao, aby blokowały enzym, który neturalizuje działanie dmt. Chyba tak to było. Jest też forma palona zwana changa i też tam jest inhibitor mao. Używa się różnych roślin, ale baza właśnie jest ta zawierająca dmt i druga z imao. Inhibitory monoaminooksydazy też wykorzystuje się w leczniu depresji jako leki, bo wpływają na zwiększone wydzialanie serotoniny i inne takie. Także bardzo możliwe, że w momencie śmierci człowiekowi wyłącza się ten enzym? Strassman też badał powiązanie dmt z chorobami psychicznymi i czy tam nie jest zablokowane jak u zdrowej osoby coś. Co też ciekawie nawiązuje do opinii ludzi, którzy w psychiatrykach widzą potencjalnych szamanów, którzy są łącznikami z tym drugim światem. Natomiast co mnie ciekawi to dmt czyste, które też jest palone, a najlepiej waporyzowane i bez inhibitorów mao też działa. Czy stężenie tego jest tak duże, że organizm nie daje rady w porę tego rozłożyć? Jest też inna tryptamina 5-MeO-DMT i ona podobnie do DMT bez tego inhibitora mao nie zadziała, ale w przypadku proszku tak jak tabaka do wciągania Yopo, ale już w przypadku formy waporyzowanej ze śluzu żaby to tak.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Naturalne składniki jabłek i innych owoców stymulują wytwarzanie nowych komórek w mózgu, co może mieć znaczenie dla procesów uczenia się i zapamiętywania, informują naukowcy z australijskiego University of Queenland oraz Niemieckiego Centrum Chorób Neurodegeneracyjnych. Badania prowadzone in vitro oraz na myszach wskazują, że kwercetyna i podobne związki obficie występujące w jabłkach, wspomagają tworzenie komórek w mózgu.
      Nasza praca pokazuje, że zarówno flawonoidy jak i kwas 3,5-dihydroksybenzoesowy wspomagają neurogenezę nie tylko przez aktywację prekursorowej proliferacji komórek, ale również wpływając na przebieg cyklu komórkowego, przeżycie komórek i różnicowanie się neuronów, stwierdzają autorzy badań.
      To kolejne z całej serii badań pokazujących, jak istotne jest prawidłowe odżywianie się dla utrzymania zdrowia. Jak się okazuje, ważne dla zdrowia naszego mózgu.
      Neurogeneza w dorosłym hipokampie to szczególny przykład plastyczności mózgu. Mamy tutaj do czynienia z neurogenezą trwającą przez całe życie, w czasie której neurony włączane są w już istniejącą strukturę, co wpływa na uczenie się i pamięć, dodają naukowcy. A flawonoidy, które są obecne w warzywach i owocach, mogą wpływać na ścieżki sygnałowe procesów poznawczych.
      Jako, że jabłka są jednymi z najchętniej spożywanych owoców Tara Louise Walker i Gerd Kempermann postanowili sprawdzić, czy zawierają one jakieś związki wspomagające neurogenezę w dorosłym hipokampie. Najpierw przyjrzeli się kwercetynie, najbardziej rozpowszechnionemu flawonoidowi w skórce jabłek. Następnie rozszerzyli swoje badania na inne podobne związki obecne w jabłkach.
      Ich badania potwierdziły, że wysokie stężenie związków fitochemicznych obecnych w jabłkach stymuluje pojawianie się nowych neuronów. Najpierw badania in vitro wykazały, że w komórki z mysiego mózgu w obecności kwercetyny lub kwasu 3,5-dihydroksybenzoesowego (DHBA) tworzą więcej neuronów i są chronione przed śmiercią komórkową. Odkryliśmy, że 3,5-DHBA nie tylko zwiększa proliferację i neurogenezę neuralnych komórek progenitorowych, ale również zwiększa tempo dojrzewania tych komórek, czytamy w artykule Apple Peel and Flesh Contain Pro-neurogenic Compounds.
      Przeprowadzone następnie badania na myszach potwierdziły, że u zwierząt, którym podawano wysokie dawki kwercetyny lub DHBA, w strukturach mózgu odpowiedzialnych za uczenie się i pamięć pojawiło się więcej neuronów. Wpływ obu środków na mózg był podobny do wpływu ćwiczeń fizycznych, o którym wiadomo, że stymuluje neurogenezę.
      Później uczeni potwierdzili jeszcze, że wpływ kwercetyny na przeżycie i różnicowanie się neuralnych komórek progenitorowych w dorosłym hipokampie jet podobny do wpływu resweratrolu i EGCG.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Emocjonalne nagłówki prasowe wpływają na nasz osąd innych ludzi, nawet jeśli uważamy ich źródło za niewiarygodne, stwierdzili neuropsycholodzy z berlińskiego Uniwersytetu Humblodtów.
      Dzięki postępowi technologicznemu plotki, kłamstwa, półprawdy rozpowszechniają się błyskawicznie i bardzo szeroko. Są bez przerwy dostępne w sieci. Mimo, że ich prawdziwość można często łatwo zakwestionować, wpływają one na przekonania pojedynczych ludzi oraz na opinię społeczną. Do niedawna jednak niewiele wiedzieliśmy o tym, jak fałszywe informacje są przetwarzane w mózgu i na ich procesy neurologiczne wpływają na nasz osąd.
      Najnowsze badania na polu neuropsychologii wskazują, że emocjonalnie nacechowane nagłówki wywierają duży wpływ na sposób przetwarzania informacji i na nasz osąd na temat innych ludzi, nawet gdy uważamy, że źródło tych nagłówków jest niewiarygodne.
      Wydawałoby się, że to, na ile wiarygodne uważamy dane źródło informacji, powinno wpływać na to, jak oceniamy samą informację podawaną przez źródło. Naukowcy z Uniwersytetu Humboldtów postanowili sprawdzić, czy nasza ocena wiarygodności źródła informacji wpływa na naszą ocenę nacechowanych emocjonalnie nagłówków pochodzących z tego źródła.
      W tym celu skonfrontowali badane osoby z fikcyjnymi nagłówkami umieszczonymi na witrynach internetowych, które miały identyczny wygląd jak znane niemieckie witryny informacyjne. Badani mieli do czynienia z nagłówkami nacechowanymi emocjonalnie oraz z nagłówkami neutralnymi dotyczącymi fikcyjnych osób. Po przeczytaniu nagłówków robiono krótką przerwę, a następnie rejestrowano aktywność mózgu w czasie, gdy badani mieli wyrazić swoją opinię o opisanych fikcyjnych osobach na podstawie ich zdjęć.
      Mimo, że badani różnie oceniali wiarygodność witryn, to okazało się, że nie odgrywało to roli w formowanych przez nich opiniach. Okazało się za to, że wpływ na opinie miał ładunek emocjonalny zawarty w nagłówku. Nawet jeśli badany nie ufał danemu źródłu informacji, to pod wpływem emocjonalnego nagłówka wyrażał skrajne opinie o osobach, których negatywne lub pozytywne zachowanie zostało opisane w nagłówku. Gdy nagłówek opisywał zachowanie negatywne, badani uważali daną osobę za niesympatyczną i posiadającą cechy negatywne, gdy zaś w nagłówku opisano zachowania pozytywne, opinia na temat danej osoby była pozytywna.
      W czasie eksperymentu rejestrowano za pomocą EEG aktywność mózgu badanych. Pozwala to odróżnić szybkie emocjonalne reakcje, od odpowiedzi wolniejszych, przemyślanych. Naukowcy spodziewali się zobaczyć na wykresach EEG najpierw szybką emocjonalną reakcję na nagłówek, a następnie wolniejszą reakcję, świadczącą o tym, że badany rozważa wiarygodność źródła i zastanawia się nad oceną opisanej osoby. Jednak niczego takiego nie zauważono. Zarówno wczesna jak i późna reakcja mózgu była szybka, emocjonalna i niezależna od wiarygodności źródła.
      Uczeni doszli do wniosku, że nasze zastrzeżenia co do wiarygodności źródła nie wpływają na ocenę informacji gdy jest ona nacechowana emocjonalnie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Pojedyncza zmiana genetyczna mogła zdecydować, że to Homo sapies wygrał rywalizację ewolucyjną z neandertalczykiem i denisowianinem. To fascynujące, że pojedyncza zmiana w ludzkim DNA mogło doprowadzić do zmiany połączeń w mózgu, mówi główny autor badań opublikowanych na łamach Science, profesor Alysson R. Muotri z Uniwersytetu Kalifornijskiego w San Diego (UCSD).
      Muotri, profesor pediatrii oraz medycyny komórkowej i molekulanej od dawna bada kwestie związane z rozwojem mózgu oraz nieprawidłowościami prowadzącymi do schorzeń neurologicznych. Interesuje go również ewolucja mózgu, a szczególnie to, co różni nasz mózg od mózgów najbliżej spokrewnionych z nami ludzi – neandertalczyków i denisowian.
      Badania nad ewolucją wykorzystują głównie dwa narzędzia – genetykę i badanie skamieniałości. Problem jednak w tym, że żadne z tych narzędzi nie mówi nam zbyt wiele o budowie i funkcjonowaniu mózgu. Mózg nie ulega bowiem fosylizacji, nie ma więc czego badać.
      Muotri zdecydował więc na wykorzystanie komórek macierzystych, narzędzia, które jest rzadko używane w rekonstrukcjach ewolucyjnych. Komórki macierzyste mogą zostać wykorzystane do tworzenia w laboratorium organoidów, czyli zminiaturyzowanej uproszczonej wersji badanego narządu. Muotri i jego zespół są pionierami w wykorzystywaniu komórek macierzystych do porównywania ludzi z innymi naczelnymi, jak szympansy czy bonobo. Dotychczas jednak uważana, że wykorzystanie tej techniki do porównania z gatunkami wymarłymi nie jest możliwe.
      W ramach najnowszych badań naukowcy katalogowali różnice genetyczne pomiędzy H. sapiens a neandertalczykami i denisowianami. Wykorzystując zmianę znalezioną w jednym tylko genie udało im się, za pomocą komórek macierzystych, uzyskać „neandertalski” organoid mózgu. Nie wiemy, kiedy i jak doszło do tej zmiany. Wydaje się jednak, że była ona znacząca i pozwala wyjaśnić umiejętności współczesnego człowieka dotyczące zachowań społecznych, języka, kreatywności, umiejętności adaptacji i wykorzystania technologii, Muotri.
      Naukowcy początkowo znaleźli 61 genów, których wersje odróżniały nas od naszych wymarłych kuzynów. Jednym z tych zmienionych genów był NOVA1. Przykuł on uwagę Muotriego, gdyż wiadomo, że jest to ważny gen regulatorowy, wpływający na wiele innych genów podczas wczesnych etapów rozwoju mózgu. Naukowcy wykorzystali więc technologię edytowania genów CRISPR do stworzenia współczesnych ludzkich komórek macierzystych zawierających neandertalską wersję genu NOVA1. Następnie pokierowali komórkami macierzystymi tak, by rozwijały się w komórki mózgowe, uzyskując w ten sposób „neandertalskie” organoidy mózgu.
      Organoidy mózgu to niewielkie grupy komórek mózgowych uzyskane z komórek macierzystych. Są one użytecznym modelem do badania genetyki, rozwoju chorób, reakcji mózgu na infekcje czy na leki.
      Stworzone przez kalifornijskich uczonych „neandertalskie” organoidy już na pierwszy rzut oka wyglądały inaczej. Miały wyraźnie inny kształt, co było wydać nawet gołym okiem. Gdy uczeni bliżej im się przyjrzeli okazało się, że organoidy H. sapiens i organoidy „neandertalskie” różnią się także sposobem proliferacji komórek oraz tworzenia synaps. Miały nawet odmienne proteiny biorące udział w tworzeniu synaps. A impulsy elektryczne generowane w „neandertalskich” organoidach były silniejsze na początkowym etapie rozwoju, jednak nie dochodziło w nich do takiej synchronizacji jak w organoidach H. sapiens.
      Zdaniem Muotriego, sposób działania i zmian w sieci neuronowej „neandertalskich” organoid jest podobny do działania, dzięki któremu noworodki naczelnych nieczłowiekowatych są w stanie nabywać nowe umiejętności znacznie szybciej niż ludzkie noworodki.
      Skupiliśmy się tylko na jednym genie, którego wersje różnią się pomiędzy człowiekiem współczesnym a wymarłymi kuzynami. Na następnych etapach badań chcemy skupić się na pozostałych 60 genach i sprawdzić, co dzieje się, gdy jeden, dwa lub więcej z nich, zostanie zmienionych, mówi Muotri.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Samce i samice nie tylko wykazują różne zachowania seksualne, ale różnice te są ewolucyjnie zaprogramowane, dowiadujemy się z nowych badań przeprowadzonych na Uniwersytecie Oksfordzkim. Zespół pod kierownictwem doktora Tesuyi Noimy i doktor Anniki Rings wykazał, że układ nerwowy obu płci, pomimo bardzo podobnej budowy, przekazuje różne sygnały samcom, a różne samicom.
      Naukowcy z Wydziału Fizjologii, Anatomii i Genetyki stwierdzili, że samce i samice muszek owocówek, pomimo niezwykle podobnego genomu i systemu nerwowego różnią się głęboko w sposobie inwestowania w strategie rozrodcze, które wymagają odmiennych adaptacji behawioralnych, morfologicznych i fizjologicznych.
      U większości gatunków zwierząt występują międzypłciowe różnice w kosztach reprodukcji. Samice często odnoszą największe korzyści z wydania na świat młodych jak najwyższej jakości, podczas gdy samce często odnoszą korzyści z łączenia się z jak największą liczbą samic. W wyniku ewolucji pojawiły się więc głębokie różnice, służące zaspokojeniu tych potrzeb.
      Uczeni z Oxfordu chcieli odpowiedzieć na pytanie, w jaki sposób różnice w międzypłciowych strategiach rozrodczych objawiają się na poziomie układu nerwowego i jak się mają do ograniczeń fizycznych, w tym ograniczeń dotyczących rozmiaru ciała czy wydatkowania energii, które są spowodowane faktem posiadania przez obie płcie bardzo podobnego genomu.
      Naukowcy odkryli, że w mózgach samic i samców – pomimo podobieństw genetycznych – istnieją różnice w niektórych obszarach mózgu. Pozwalają one na istnienie znacząco odmiennych strategii, pomimo niewielkich różnic w samej architekturze połączeń pomiędzy neuronami.
      Samce muszek owocówek zdobywają samice poprzez odpowiednie zachowania godowe. Zatem w ich strategii rozrodczej dużą rolę odgrywa możliwość gonienia samicy. Dla samic takie zachowania praktycznie nie mają znacznia. W ich przypadku ważny jest sukces potomstwa, a tutaj bardzo ważną rolę odgrywa umiejętność wyboru jak najlepszego miejsca złożenia jaj.
      Brytyjscy uczeni badali różnice w działaniu czterech grup neuronów umieszczonych parami po jednej w każdej z półkul mózgu samców i samic. Odkryli, że połączenia pomiędzy neuronami w tych grupach przebiegają nieco inaczej, w zależności od płci badanego zwierzęcia. Okazało się, że dzięki tym różnicom samce odbierają więcej bodźców wzrokowych, a samice – węchowych. Co więcej, uczeni wykazali, że to właśnie te różnice odpowiadają za różnice w zachowaniu zwierząt. W przypadku samców jest to sterowana wzrokiem zdolność do podążania za samicą, w przypadku samic – zdolność do wspólnego składania jaj w najlepszych miejscach.
      Te niewielkie różnice w połączeniach pomiędzy neuronami pozwalają na istnienie specyficznej dla płci strategii ewolucyjnej. Ostateczny cel tych różnic jest taki sam – odniesienie sukcesu reprodukcyjnego, stwierdzają autorzy badań.
      To pierwsze badania, które wykazały istnienie bezpośredniego silnego związku pomiędzy różnicami w budowie mózgu, a zachowaniami typowymi dla danej płci.
      Wcześniejsze badania na ten temat sugerowały, że istnienie międzypłciowych różnic w przetwarzaniu informacji sensorycznych może prowadzić do zachowań typowych dla płci. Jednak badania te ograniczały się do wykazania istnienia różnic neuroanatomicznych i fizjologicznych, bez udowodnienia ich związku z zachowaniami. My poszliśmy dalej. Powiązaliśmy anatomiczne różnice z charakterystyczną dla płci fizjologią, zachowaniem i rolami płciowymi, mówi profesor Stephen Goodwin, w którego zespole pracują autorzy badań.
      Artykuł A sex-specific switch between visual and olfactory inputs underlies adaptive sex differences in behaviour jest dostępny na łamach Current Biology.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badania prowadzone przez naukowców z Kanady sugerują, że rozwój glejaka wielopostaciowego – niezwykle agresywnego i śmiertelnego nowotworu mózgu – może być powiązany z procesem zdrowienia mózgu. Uraz, udar czy infekcja mogą napędzać nowotwór, gdy nowe komórki, mające zastąpić te zniszczone w czasie urazu, ulegną mutacjom. Odkrycie może doprowadzić do rozwoju nowych technik walki z glejakiem, jednym z najtrudniejszych w leczeniu nowotworów mózgu u dorosłych.
      Zdobyte przez nas dane wskazują, że odpowiednie mutacje w konkretnych komórkach mózgu mogą mieć swoją przyczynę w urazie i prowadzić do rozwoju nowotworu, mówi doktor Peter Dirks, ordynator oddziału neurochirurgii w Hospital for Sick Children (SickKids). W badaniach brali też udział naukowcy z University of Toronto oraz Princess Margaret Cancer Centre.
      Glejak może być postrzegany jako rana, która nigdy się nie goi. Jesteśmy podekscytowani naszym odkryciem, gdyż mówi nam ono, w jaki sposób nowotwór się zaczyna i jak rośnie. To zaś pozwala nam myśleć o nowych sposobach leczenia skoncentrowanych na ranie i odpowiedzi zapalnej, dodaje Dirks.
      Obecnie istnieją bardzo ograniczone możliwości leczenia glejaka, a pacjenci żyją średnio zaledwie 15 miesięcy od postawienia diagnozy. Niepowodzenie w leczeniu ma swoje korzenie w dużej różnorodności zarówno pomiędzy guzami, jak i pacjentami. Glejaki zawierają wiele różnych typów komórek, w tym rzadkie komórki macierzyste glejaka (GSC), które napędzają wzrost guza, wyjaśnia Dirks.
      Zespół Dirksa już wcześniej wykazał, że GSC zapoczątkowują glejaka i jego wznowę po leczeniu. Dlatego też postanowili bliżej przyjrzeć się tym komórkom. Wykorzystali w tym celu najnowsze techniki sekwencjonowania RNA oraz maszynowego uczenia się. Stworzyli na tej podstawie molekularną mapę GSC pobranych z guzów 26 pacjentów.
      Uzyskane wyniki potwierdziły istnienie olbrzymiego zróżnicowania, co wskazuje, że każdy z guzów zawiera wiele podtypów molekularnie zróżnicowanych GSC. To powoduje, że po leczeniu guz prawdopodobnie powróci, gdyż stosowane terapie nie są w stanie zabić wszystkich tych podtypów komórek. Naszym celem jest znalezienie leku, który zabije wszystkie rodzaje komórek macierzystych glejaka. By jednak tego dokonać musimy najpierw zrozumieć budowę molekularną tych komórek, mówi profesor Gary Bader z University of Toronto.
      Co interesujące, znaleziono liczne podtypy GSC, których budowa molekularna wskazywała na związki ze stanem zapalnym. To wskazywało, że przynajmniej niektóre glejaki rozpoczynają się w wyniku naturalnego procesu leczenia po urazie. Dirks mówi, że do takich mutacji rozpoczynających glejaka może dochodzić na wiele lat przed pojawieniem się choroby. Niewykluczone, że gdy w procesie leczenia mózgu po urazie pojawia się zmutowana komórka, nie może przestać się ona dzielić, gdyż nie działają jej mechanizmy kontrolne i w wyniku tego procesu dochodzi do rozwoju guza.
      Gdy uczeni jeszcze bliżej przyjrzeli się komórkom, okazało się, że każdy guz znajduje się w jednym z dwóch stanów molekularnych – roboczo nazwanych „rozwojowym” i „odpowiedzią na uraz” – lub gdzieś na gradiencie pomiędzy nimi. Stan „rozwojowy” to znak rozpoznawczy komórek macierzystych i przypomina stan, w którym komórki macierzyste mózgu bardzo szybko się dzielą przed urodzeniem. Drugi ze stanów był zaś dla naukowców niespodzianką. Nazwali go oni „odpowiedzią na uraz”, gdyż ma tam miejsce zwiększenie ekspresji szlaków immunologicznych i markerów zapalnych, takich jak interferon i TNFalfa. To wskaźniki toczącego się procesu zdrowienia. Zjawiska te udało się zauważyć dopiero teraz, dzięki nowoczesnym technikom sekwencjonowania RNA pojedynczych komórek.
      Dalsze eksperymenty pokazały, że oba te stany są wrażliwe na różne typy usunięcia genów. Ujawniono w ten sposób potencjalne metody leczenia, które dotychczas nie były brane pod uwagę przy glejaku. Badania pokazały też, że względny stosunek obu stanów jest cechą indywidualną każdego guza. Komórki każdego z nich mogą znajdować się w różnym miejscu na osi pomiędzy stanem „rozwojowym” a „odpowiedzią na uraz”. Podczas gdy GSC każdego pacjenta składają się z różnych populacji, wszystkie one znajdują się na jedne biologicznej osi pomiędzy dwoma stanami definiowanymi przez procesy neurorozwoju i zapalne, stwierdzają autorzy badań.
      Teraz Kanadyjczycy zastanawiają się nad metodami leczenia. Odkryta przez nas heterogeniczność komórek macierzystych wskazuje, że trzeba opracować terapie biorące na cel jednocześnie procesy rozwojowe i zapalne. Szukamy leków, które działają w różnych miejscach osi między oboma stanami. Istnieje tutaj potrzeba rozwoju zindywidualizowanego podejścia do pacjenta. Trzeba będzie wykonać badania guza na poziomie pojedynczej komórki i na tej podstawie przygotować koktajl leków, który w tym samym momencie będzie działał na różne podtypy komórek macierzystych, stwierdza doktor Trevor Pugh z Princess Margaret Cancer Centre.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...