Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Liposomalna kurkumina z ceramicznego rusztowania wspomaga pooperacyjne gojenie kości

Recommended Posts

Amerykańscy naukowcy wydrukowali w 3D ceramiczne rusztowanie z fosforanu wapnia. Wprowadzili do niego enkapsulowaną kurkuminę, czyli żółto-pomarańczowy barwnik z bulw ostryżu długiego. Eksperymenty pokazały, że taki system hamuje komórki kostniakomięsaka i sprzyja wzrostowi zdrowych komórek kościotwórczych (osteoblastów).

Naukowcy z Uniwersytetu Stanowego Waszyngtonu podkreślają, że często przed i po operacji młodym pacjentom podaje się wysokie dawki chemioterapeutyków. Jak można się domyślić, wiąże się to z poważnymi skutkami ubocznymi. Nic więc dziwnego, że specjalistom zależy na opracowaniu delikatniejszych opcji terapeutycznych, zwłaszcza pooperacyjnych, gdy jednocześnie zachodzi gojenie kości.

Kurkumina ma właściwości przeciwutleniające, przeciwzapalne i sprzyja wzrostowi kości. Wykazano także, że pomaga w zapobieganiu różnym nowotworom.

Chciałabym, by ludzie znali korzystne działania naturalnych związków. Pozyskane z produktów roślinnych naturalne biocząsteczki są tanimi i bezpieczniejszymi alternatywami dla leków syntetycznych - podkreśla Susmita Bose.

Zespół dodaje jednak, że przyjmowana doustnie kurkumina nie jest dobrze wchłaniania, bo ulega szybkiemu metabolizowaniu i wydaleniu.

Podczas eksperymentów wykorzystano zatem drukowane w 3D porowate rusztowania z CaP oraz kurkuminę enkapsulowaną w liposomach. Akademicy określali jej wpływ na 2 linie komórkowe: ludzkie płodowe osteoblasty hFOB i komórki kostniakomięsaka (linię MG-63). Okazało się, że liposomalna kurkumina wykazywała znaczącą cytotoksyczność w stosunku do komórek kostniakomięsaka i sprzyjała żywotności i namnażaniu osteoblastów.

Autorzy artykułu z pisma ACS Applied Materials and Interfaces stwierdzili, że w porównaniu do próbek kontrolnych, po 11 dniach ich system hamował wzrost komórek kostniakomięsaka aż o 96%.

Naukowcy podkreślają, że takie bifunkcyjne rusztowania, które eliminują komórki kostniakomięsaka i sprzyjają namnażaniu osteoblastów, stwarzają nowe możliwości w zakresie leczenia defektów kostnych po resekcji guza.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Zanim cierpiący na nowotwór pacjent zostanie poddany terapii z użyciem limfocytów T, cały jego układ odpornościowy musi zostać zniszczony za pomocą radio- lub chemioterapii. Toksyczne skutki takiego działania to m.in. nudności, olbrzymie zmęczenie i utrata włosów. Teraz grupa naukowców wykazała, że syntetyczne receptory IL-9 pozwalają na stosowanie terapii limfocytami T bez konieczności użycia chemii czy radioterapii. Zmodyfikowane limfocyty T z syntetycznym receptorem IL-9 skutecznie zwalczały nowotwór u myszy, czytamy na łamach Nature.
      Gdy limfocyty T przekazują sygnały za pośrednictwem syntetycznego receptora IL9, zyskują nowe funkcje, które nie tylko pozwalają im poradzić sobie z istniejącym układem odpornościowym pacjenta, ale również bardziej efektywnie zabijają komórki nowotworowe, mówi doktor Anusha Kalbasi z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA), który kierował grupą badawczą. Mam właśnie pacjenta, który zmaga się ze skutkami ubocznymi chemioterapii po to, by zniszczyć jego układ odpornościowy, żeby można było zastosować leczenie limfocytami T. dzięki tej technologii mógłby mieć szansę na terapię bez konieczności wcześniejszego niszczenia układu odpornościowego.
      To odkrycie może spowodować, że będziemy w stanie stosować terapię limfocytami T równie łatwo, jak stosuje się transfuzję krwi, dodaje mentor Kalbasiego, doktor Antoni Ribas.
      W 2018 roku Ribas i Christopher Garcia z Uniwersytetu Stanforda opublikowali pracę naukową, w której analizowali możliwość użycia syntetycznej wersji interleukiny-2 (IL-2) do stymulowania limfocytów T wyposażonych w syntetyczny receptor IL-2. Dzięki takiemu systemowi można by manipulować limfocytami T nawet po podaniu ich pacjentowi. Manipulacji można by dokonać podając mu syntetyczną IL-2, która nie ma wpływu na inne komórki ciała. Kalbasi i jego koledzy, zaintrygowani tymi spostrzeżeniami, postanowili przetestować podobny system, wykorzystując przy tym syntetyczne receptory, które przekazywałyby sygnały z innych cytokin, jak IL-4, IL-7, IL-9 oraz IL-21.
      Bardzo szybko stało się jasne, że warto skupić się na cytokinie IL-9, mówi Kalbasi. W przeciwieństwie do pozostałych wymienionych cytokin, sygnały z IL-9 nie są typowo aktywne w limfocytach T. Tymczasem syntetyczny sygnał IL-9 nadał limfocytom T unikatowe cechy komórek macierzystych oraz komórek-zabójców, dzięki czemu lepiej radziły sobie z guzami. W jednym z naszych zwierzęcych modeli nowotworów za pomocą limfocytów T z syntetycznym receptorem IL-9 wyleczyliśmy ponad połowę myszy, chwali się Kalbasi.
      Naukowcy wykazali, że terapia taka działa w przypadku co najmniej dwóch trudnych w leczeniu nowotworów – czerniaka i raka trzustki. Terapia była skuteczna niezależnie od tego, czy cytokiny podawaliśmy ogólnie do organizmu, czy bezpośrednio do guza. We wszystkich przypadkach limfocyty T z syntetycznym receptorem IL-9 działały lepiej i pozwalały na pozbycie się guzów, których w inny sposób nie moglibyśmy usunąć, dodaje Kalbasi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Podczas prac archeologicznych prowadzonych przed zainstalowaniem rusztowań potrzebnych do odbudowy drewnianej kalenicy w katedrze Notre Dame natrafiono na kilka pochówków i ołowiany antropomorficzny sarkofag. Do odkrycia doszło w miejscu, gdzie transept krzyżuje się z nawą.
      Wykopaliska rozpoczęły się 2 lutego br. i są prowadzone przez Institut national de recherches archéologiques préventives (INRAP). W związku ze znaleziskami przedłużono je do 25 marca.
      Wg francuskiego Ministerstwa Kultury, pochówki mają dużą wartość naukową. Wydaje się, że sarkofag wykonano w XIV w. dla dygnitarza.
      Tuż pod poziomem podłogi dzisiejszej katedry znaleziono także fragmenty oryginalnego polichromowanego XIII-wiecznego lektorium. Warto dodać, że w połowie XIX w. Eugène Emmanuel Viollet-le-Duc znalazł inne jego elementy, które są obecnie wystawiane w Luwrze.
      Ekipa posłużyła się miniaturową kamerą, dzięki której można było zajrzeć do powyginanego pod ciężarem ziemi i kamieni sarkofagu. Można dostrzec kawałki tkaniny, włosy oraz liście [...] - opowiada kierownik wykopalisk Christophe Besnier. Fakt, że rośliny nadal się tam znajdują, oznacza, że ciało również jest zapewne dobrze zachowane.
      Dominique Garcia z INRAP-u podkreśla, że znalezisko pomoże lepiej zrozumieć średniowieczne praktyki pogrzebowe.
      Do odkrycia doszło w związku z przygotowaniami do zamontowania rusztowania, które zostanie wykorzystane podczas rekonstrukcji iglicy. Podczas oceny stabilności podłoża natrafiono na system grzewczy z XIX w. - sarkofag leżał pomiędzy ceglanymi rurami.
      Piętnastego kwietnia 2019 r. w Notre Dame wybuchł pożar. Spowodował on ogromne zniszczenia. Zawaliła się m.in. iglica katedry. Otwarcie po odbudowie jest planowane na 2024 r.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Znaleziony w jaskini fragment kości może być jednym z najstarszych znanych nam przykładów sztuki. Kawałek kości palca jelenia znaleziono w Jaskini Jednorożca na zachodzie gór Harz w 2019 roku. Odkrycie zostało opisane w piśmie Nature Ecology & Evolution.
      Badania wskazują, że kość liczy sobie co najmniej 51 000 lat. Widnieją na niej głębokie ukośne linie, które mogą być dziełem neandertalczyków. To początek kultury, początek abstrakcyjnego myślenia, narodziny sztuki, mówi Thomas Terberger, archeolog z Uniwersytetu w Getyndze.
      Naukowcy stwierdzili, że rzeźbiona kość dowodzi, że wyobraźnia koncepcyjna, która jest wymagana do stworzenia wzoru składającego się z linii, nie była obca neandertalczykom. Zdaniem odkrywców nie mamy tutaj do czynienia z wisiorkiem. Podstawa kości jest na tyle płaska, że kość można ustawić, a w wówczas linie wskazują w górę. Taką orientację sugerują też linie wyrzeźbione u podstawy. Uczeni przypuszczają, że ozdoby miały znaczenie symboliczne.
      Zdobiona kość pozwala co nieco powiedzieć o zdolnościach intelektualnych neandertalczyków. Czekamy na odkrycie czegoś większego. Chcielibyśmy znaleźć u neandertalczyków wczesne dowody na nowoczesne myślenie, stwierdził Dirk Leder ze Służby Dziedzictwa Kulturowego Dolnej Saksonii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Komórki nowotworów złośliwych łatwiej niż prawidłowe ulegają mechanicznym deformacjom, co umożliwia im migrację w organizmie. W Instytucie Fizyki Jądrowej Polskiej Akademii Nauk w Krakowie zbadano własności mechaniczne komórek raka prostaty poddanych działaniu najczęściej stosowanych leków antynowotworowych. Zdaniem badaczy, obecne leki można stosować efektywniej i w mniejszych dawkach.
      W przypadku raka kluczowym czynnikiem sprzyjającym powstawaniu przerzutów jest zdolność komórek nowotworowych do ulegania deformacjom mechanicznym. W Instytucie Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie badania nad własnościami mechanicznymi komórek są prowadzone od ćwierć wieku. Najnowsze prace, zrealizowane w kooperacji z Katedrą Biochemii Lekarskiej Collegium Medicum Uniwersytetu Jagiellońskiego (CM UJ), dotyczyły kilku leków obecnie używanych w chemioterapii raka prostaty, a konkretnie ich wpływu na własności mechaniczne komórek nowotworowych. Wyniki napawają optymizmem: wszystko wskazuje na to, że dawki niektórych leków będzie można zmniejszyć bez ryzyka obniżenia skuteczności ich działania.
      Chemioterapia to wyjątkowo brutalny atak nie tylko na komórki nowotworowe pacjenta, ale na wszystkie komórki jego organizmu. Stosując ją lekarze mają nadzieję, że bardziej wrażliwe komórki nowotworu zginą zanim zaczną ginąć komórki zdrowe. W tej sytuacji kluczowego znaczenia nabiera wiedza, jak dobrać lek optymalny w danym przypadku oraz jak ustalić jego minimalną dawkę, która z jednej strony zagwarantuje skuteczność działania, z drugiej zaś pozwoli zminimalizować negatywne skutki terapii.
      Fizycy z IFJ PAN już w 1999 roku wykazali, że komórki nowotworowe łatwiej się deformują mechanicznie. W praktyce fakt ten oznacza, że z większą efektywnością mogą się przeciskać przez wąskie naczynia układów krwionośnego i/lub limfatycznego.
      O mechanicznych własnościach komórki decydują takie elementy jej cytoszkieletu jak badane przez nas mikrotubule zbudowane z białka tubuliny, filamenty aktynowe z aktyny oraz filamenty pośrednie tworzone z białek typu keratyna czy wimentyna, mówi prof. dr hab. Małgorzata Lekka z Zakładu Badań Mikroukładów Biofizycznych IFJ PAN i uzupełnia: Pomiary biomechaniczne komórek prowadzimy za pomocą mikroskopu sił atomowych. W zależności od potrzeb, możemy sondą słabiej lub mocniej naciskać na komórkę i w ten sposób otrzymujemy odpowiedź mechaniczną pochodzącą od struktur leżących albo przy jej powierzchni, czyli przy błonie komórkowej, albo głębiej, nawet przy jądrze komórkowym. Jednak aby otrzymać informację o skutkach działania leku, musimy ocenić, jaki wkład do własności mechanicznych komórki wnoszą poszczególne rodzaje włókien cytoszkieletu.
      W obecnie raportowanych wynikach krakowscy fizycy przedstawili eksperymenty z użyciem komercyjnie dostępnej linii ludzkich komórek raka prostaty DU145. Linię tę wybrano z uwagi na jej odporność na działanie leków. Wystawione na długotrwały wpływ leków, komórki te po pewnym czasie uodparniają się na działanie leków i nie tylko nie umierają, ale nawet zaczynają się dzielić.
      Skoncentrowaliśmy się na efektach działania trzech często stosowanych leków: winfluniny, kolchicyny i docetakselu. Wszystkie oddziałują na mikrotubule, co jest pożądane z uwagi na fakt, że to właśnie te włókna są istotne przy podziale komórki. Docetaksel stabilizuje mikrotubule, zatem zwiększa też sztywność komórek nowotworu i utrudnia im migrację w organizmie. Pozostałe dwa leki destabilizują mikrotubule, komórki nowotworowe mogą więc migrować, jednak z uwagi na zaburzone funkcje cytoszkieletu nie są w stanie się dzielić, mówi doktorant Andrzej Kubiak, pierwszy autor artykułu opublikowanego na łamach prestiżowego czasopisma naukowego Nanoscale.
      Krakowscy naukowcy analizowali żywotność i własności mechaniczne komórek po 24, 48 i 72 godzinach od poddania ich działaniu leków, przy czym okazało się, że największe zmiany są obserwowane trzy dni od ekspozycji na lek. Badania pozwoliły ustalić dwa stężenia leków: wyższe, które niszczyło komórki, oraz niższe, przy którym komórki co prawda przeżywały, lecz ich własności mechaniczne okazały się być zmienione. Z oczywistych względów szczególnie interesujące było to, co się działo z komórkami w ostatnim z wymienionych przypadków. Precyzyjna interpretacja części wyników wymagała zastosowania szeregu narzędzi, takich jak mikroskop konfokalny czy cytometria przepływowa. Ich użycie było możliwe dzięki współpracy z Instytutem Farmakologii PAN w Krakowie, Zakładem Biologii Komórki na Wydziale Biochemii, Biofizyki i Biotechnologii UJ oraz Uniwersytetem w Mediolanie (Department of Physics, Università degli Studi di Milano).
      Od pewnego czasu wiadomo, że gdy dochodzi do uszkodzeń mikrotubul, część ich funkcji przejmują włókna aktynowe. Połączenie pomiarów własności mechanicznych komórek z obrazami z mikroskopów konfokalnego i fluorescencyjnego pozwoliło nam zaobserwować ten efekt. Byliśmy w stanie dokładnie ustalić obszary w komórce, na które działa dany lek, oraz zrozumieć, jak przebiegają zmiany jego wpływu w czasie, podkreśla doktorant Kubiak.
      Z badań krakowskich fizyków płyną praktyczne wnioski. Na przykład wpływ winfluniny jest wyraźnie widoczny w obszarze jądrowym, lecz jest kompensowany przez włókna aktynowe. W rezultacie komórka pozostaje wystarczająco sztywna, by mogła się dalej namnażać. Z kolei po 48 godzinach od podania leku najlepiej widać efekty działania docetakselu, jednak głównie na obrzeżach komórek. Fakt ten także informuje o wzroście roli włókien aktynowych i oznacza, że terapię należałoby wesprzeć jakimś lekiem działającym właśnie na te włókna.
      Do tej pory niewiele było badań nad skutecznością małych stężeń leków antynowotworowych. My pokazujemy, że zagadnieniem naprawdę warto się zainteresować. Jeśli bowiem dobrze zrozumiemy mechanizmy działania poszczególnych leków, możemy zachować – a niekiedy wręcz zwiększyć – ich dotychczasową skuteczność przy jednoczesnym zmniejszeniu skutków ubocznych chemioterapii. W ten sposób chemioterapia może stać się bardziej przyjazna pacjentowi, co powinno wpłynąć nie tylko na jego zdrowie fizyczne, ale i na nastawienie psychiczne, tak potrzebne w walce z rakiem, podsumowuje prof. Lekka.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wszystkie komórki nowotworowe, a nie tylko ich niewielki podzbiór, są zdolne do wprowadzenia się w tryb powolnego podziału w sytuacji, gdy znajdą się w stanie zagrożenia. Później, gdy zagrożenie minie, mogą się „przebudzić” i powrócić do trybu szybkiego podziału. Dzięki zdolności do wspólnego wprowadzania się w stan uśpienia komórki nowotworowe mogą przetrwać poszczególne etapy chemioterapii i zyskać oporność na kolejne jej etapy.
      Komórki guza wykorzystują więc diapauzę czyli wywoływany czynnikami zewnętrznymi, ale sterowany wewnętrznie, przejściowy stan zahamowania rozwoju. O tym, że komórki nowotworowe mogą korzystać z diapauzy poinformowali właśnie naukowcy z Princess Margaret Cancer Center oraz University of Toronto. Ich artykuł można przeczytać na łamach Cell.
      Wykorzystaliśmy techniki oznaczania komórek oraz modelowania matematycznego na pobranych od pacjenta komórkach raka jelita grubego. Chcieliśmy w ten sposób zidentyfikować i scharakteryzować stany, w których znajdują się komórki w reakcji na chemioterapię (DTP, drug-tolerant persister). W guzach, które weszły w stan DTP nie stwierdziliśmy spadku złożoności klonalnej, a po zaprzestaniu leczenia guzy te podjęły swoje zwykłe działanie, napisali autorzy badań. Dodali, że uzyskane przez nich dane pasują do matematycznego modelu przewidującego, że wszystkie komórki nowotworowe, a nie tylko niektóre małe subpopulacje, są zdolne do wejścia w DTP.
      W ramach prowadzonych badań zespół pod kierunkiem Catherine O'Brien i Miguela Ramalho-Santosa traktował chemioterapeutykami ludzkie komórki raka jelita grubego. Okazało się, że wszystkie komórki weszły w stan powolnego rozwoju, w którym przestały się dzielić i wymagały niewiele składników odżywczych. Dopóki na szalce Petriego znajdowały się chemioterapeutyki, dopóty komórki nowotworowe pozostawały w stanie, który naukowcy nazwali „stanem DTP podobnym do diapauzy”.
      Zwykle diapauza, którą wykorzystuje ponad 100 gatunków ssaków, służy ochronie rozwijającego się płodu w warunkach znacznej zmienności środowiskowej. Gdy panują np. zbyt wysokie lub zbyt niskie temperatury czy brakuje żywności, rozwój embrionu zostaje w dużej mierze wstrzymany, w oczekiwaniu na poprawienie się warunków. Kanadyjscy naukowcy informują teraz, że komórki nowotworowe znajdujące się w stanie DTP wykazują niezwykłe podobieństwa transkrypcyjne i funkcjonalne do stanu diapauzy.
      Okazuje się, że komórki nowotworowe potrafią wykorzystać ten ewolucyjny mechanizm przetrwania, mimo że dotychczas wydawało się, iż ludzie utracili go w wyniku ewolucji, mówi O'Brien. Uczona, która jest chirurgiem specjalizującym się w nowotworach układu pokarmowego, wpadła na pomysł swoich badań przed trzema laty, gdy przypomniała sobie wykład na temat komórkowych mechanizmów umożliwiających przetrwanie embrionu myszy w niekorzystnych warunkach. Gdy go słuchałam, wpadła mi do głowy myśl, żeby zbadać, czy komórki nowotworowe mogą wykorzystywać taki mechanizm do przetrwania chemioterapii, mówi.
      Uczona skontaktowała się z Miguelem Ramalho-Santosem, autorem wspomnianego wykładu, i porównała profile ekspresji genów w powoli rozwijających się komórkach nowotworu znajdujących się w stanie DTP w wyniku chemioterapii z ekspresją genów mysich embrionów w stanie diapauzy. Okazało się, że profile te są do siebie uderzająco podobne.
      Podobnie jak w przypadku embrionów, komórki nowotworowe w DTP potrzebowały aktywowania procesu autofagii. W jego wyniku komórka może „pożreć” własne proteiny i inne elementy by przetrwać, gdy brakuje innych źródeł energii.
      O'Brien przetestowała niewielką molekułę blokującą autofagię i wówczas komórki nowotworowe nie przeżyły. Zostały zabite przez chemioterapeutyki. To daje nam unikatową szansę. Powinniśmy zaatakować komórki nowotworowe gdy znajdują się w tym spowolnionym okresie, zanim nabędą genetycznej oporności na leki. To nowy sposób myślenia o oporności na chemioterapię i o jej pokonaniu, dodaje uczona.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...