Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Mrówki ratują pobratymców z pajęczej sieci. Później rozrywają pułapkę na strzępy

Recommended Posts

Pustynne mrówki żniwiarki Veromessor pergandei z narażeniem życia uwalniają swoje towarzyszki z sieci pająków. Czasem celowo nawet niszczą pajęczyny, poświęcając na to do 2 godzin.

Po raz pierwszy zachowanie takie zaobserwowano w 2015 r. na pustyni Mojave i Sonorze. Naukowcy zauważyli wtedy, że mrówki nie tylko uwalniają więźniów z lepkiej sieci, ale i rozbrajają potem pajęczą sieć, tnąc ją żuwaczkami nawet przez 2 godziny. Akcje ratownicze są niebezpieczne - ok. 6% ratowników utyka w sieci albo pada ofiarą czyhającego w pobliżu pająka.

Kiedy autorzy publikacji z pisma The American Naturalist zabrali mrówki do laboratorium, odkryli, że owady ignorowały puste pajęczyny. To sugeruje, że reagują one na chemiczne sygnały stresu uwięzionych w sieci V. pergandei.

Tym samym mrówki V. pergandei trafiają do wąskiego grona zwierząt, które angażują się w zachowania ratownicze. Typowo postrzegano je jako zarezerwowane dla ssaków, takich jak naczelne i delfiny. Jeszcze rzadsze były przypadki niszczenia pułapek; dotąd wśród kręgowców odnotowano je tylko u 2 grup: dzikich szympansów z Bossou w Gwinei oraz goryli górskich z Rwandy, które rozmontowywały wnyki kłusowników.

 


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Iskra
      Dokładnie 50 lat temu, późnym wieczorem 29 października 1969 roku na Uniwersytecie Kalifornijskim w Los Angeles (UCLA) dwóch naukowców prowadziło pozornie nieznaczący eksperyment. Jego konsekwencje ujawniły się dopiero wiele lat później, a skutki pracy profesora Leonarda Kleinrocka i jego studenta Charleya Kline'a odczuwamy do dzisiaj.
      Kleinrock i Kline mieli do rozwiązania poważny problem. Chcieli zmusić dwa oddalone od siebie komputery, by wymieniły informacje. To, co dzisiaj wydaje się oczywistością, przed 50 laty było praktycznie nierozwiązanym problemem technicznym. Nierozwiązanym aż do późnego wieczora 29 października 1969 roku.
      Jeden ze wspomnianych komputerów znajdował się w UCLA, a drugi w oddalonym o 600 kilometrów Stanford Research Institute (SRI) w Menlo Park. Próby nawiązania łączności trwały wiele godzin. Kline próbował zalogować się do komputera w SRI, zdążył w linii poleceń wpisać jedynie  „lo”, gdy jego maszyna uległa awarii. Wymagała ponownego zrestartowania i ustanowienia połączenia. W końcu około godziny 22:30 po wielu nieudanych próbach udało się nawiązać łączność i oba komputery mogły ze sobą „porozmawiać”. Wydaje się jednak, że pierwszą wiadomością wysłaną za pomocą sieci ARPANETu było „lo”.
       

       
      Trudne początki
      Początków ARPANETU możemy szukać w... Związku Radzieckim, a konkretnie w wielkim osiągnięciu, jakim było wystrzelenie Sputnika, pierwszego sztucznego satelity Ziemi. To był dla Amerykanów policzek. Rosjanie pokazali, że pod względem technologicznym nie odstają od Amerykanów. Cztery lata zajęło im nadgonienie nas w technologii bomby atomowej, dziewięć miesięcy gonili nas w dziedzinie bomby wodorowej. Teraz my próbujemy dogonić ich w technice satelitarnej, stwierdził w 1957 roku George Reedy, współpracownik senatora, późniejszego prezydenta, Lyndona Johnsona.
      Po wystrzeleniu Sputnika prezydent Eisenhower powołał do życia Advanced Research Project Agency (ARPA), której zadaniem była koordynacja wojskowych projektów badawczo-rozwojowych. ARPA zajmowała się m.in. badaniami związanymi z przestrzenią kosmiczną. Jednak niedługo później powstała NASA, która miała skupiać się na cywilnych badaniach kosmosu, a programy wojskowe rozdysponowano pomiędzy różne wydziały Pentagonu. ARPA zaś, ku zadowoleniu środowisk naukowych, została przekształcona w agencję zajmującą się wysoce ryzykownymi, bardzo przyszłościowymi badaniami o dużym teoretycznym potencjale. Jednym z takich pól badawczych był czysto teoretyczny sektor nauk komputerowych.
      Kilka lat później, w 1962 roku, dyrektorem Biura Technik Przetwarzania Informacji (IPTO) w ARPA został błyskotliwy naukowiec Joseph Licklider. Już w 1960 roku w artykule „Man-Computer Symbiosis” uczony stwierdzał, że w przyszłości ludzkie mózgi i maszyny obliczeniowe będą bardzo ściśle ze sobą powiązane. Już wtedy zdawał on sobie sprawę, że komputery staną się ważną częścią ludzkiego życia.
      W tych czasach komputery były olbrzymimi, niezwykle drogimi urządzeniami, na które mogły pozwolić sobie jedynie najbogatsze instytucje. Gdy Licklider zaczął pracować dla ARPA szybko zauważył, że aby poradzić sobie z olbrzymimi kosztami związanymi z działaniem centrów zajmujących się badaniami nad komputerami, ARPA musi kupić wyspecjalizowane systemy do podziału czasu. Tego typu systemy pozwalały mniejszym komputerom na jednoczesne łączenie się z wielkim mainframe'em i lepsze wykorzystanie czasu jego procesora. Dzięki nim wielki komputer wykonywać różne zadania zlecane przez wielu operatorów. Zanim takie systemy powstały komputery były siłą rzeczy przypisane do jednego operatora i w czasie, gdy np. wpisywał on ciąg poleceń, moc obliczeniowa maszyny nie była wykorzystywana, co było oczywistym marnowaniem jej zasobów i pieniędzy wydanych na zbudowanie i utrzymanie mainframe’a.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dokładnie przed 50 laty, 29 października 1969 roku, dwaj naukowcy z Uniwersytetu Kalifornijskiego w Los Angeles, wykorzystali nowo powstałą, rewolucyjną sieć ARPANET, do przesłania pierwszej wiadomości. Po wielu nieudanych próbach około godziny 22:30 udało się zalogować do komputera w oddalonym o 600 kilometrów Stanford Research Institute.
      Wieloletnia podróż, która rozpoczęła się od... wysłania Sputnika przez Związek Radziecki i trwa do dzisiaj w postaci współczesnego internetu, to fascynująca historia genialnych pomysłów, uporu, porażek i ciężkiej pracy wielu utalentowanych ludzi. Ludzi, wśród których niepoślednią rolę odegrał nasz rodak Paul Baran.
      To, co rozpoczęło się od zimnowojennej rywalizacji atomowych mocarstw, jest obecnie narzędziem, z którego na co dzień korzysta ponad połowa ludzkości. W ciągu pół wieku przeszliśmy od olbrzymich mainframe'ów obsługiwanych z dedykowanych konsol przez niewielką grupę specjalistów, po łączące się z globalną siecią zegarki, lodówki i telewizory, które potrafi obsłużyć dziecko.
      Zapraszamy do zapoznania się z fascynującą historią internetu, jednego z największych wynalazków ludzkości.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzięki mikroskopijnym guzkom na egzoszkielecie ciemne plamki pająków z rodzaju Maratus odbijają zaledwie 0,5% światła (dzieje się tak przy kącie zbierania rzędu 30°). Dzięki temu są one postrzegane jako czarniejsze od zwykłej czerni.
      Jak tłumaczy Dakota McCoy z Uniwersytetu Harvarda, ultraczarne plamki generują złudzenie optyczne i sprawiają, że zlokalizowane w pobliżu na odwłoku barwne wzory wydają się jaskrawsze i praktycznie świecą.
      W czasie pokazów godowych samce wprawiają barwny odwłok w wibracje. Żółte i czerwone kolory to skutek obecności barwników (3-OH-kinureniny i ksantommatyny). Niebieskie i fioletowe kolory to z kolei skutek oddziaływania światła z włoskowatymi łuskami.
      Czarne obszary także zawierają barwnik, ale badania przeprowadzone za pomocą skaningowego mikroskopu elektronowego pokazały, że na superczarnych plamkach M. speciosus i M. karrie znajdują się dodatkowo drobne wyrostki. Spokrewnione z tymi pająkami jednolicie czarne skakuny z rodzaju Cylistella mają dla odmiany gładką teksturę.
      Dzięki symulacjom zespół McCoy wykazał, że wyrostki na kilka sposobów sprawiają, że ciemne plamy wydają się jeszcze ciemniejsze. Trafiając na nierówność, fala świetlna ugina się np. w taki sposób, że "omija" pole widzenia samicy. W grę wchodzi też odbicie wielokrotne (ang. multiple scattering). Poza tym wyrostki są mikrosoczewkami; fala świetlna obiera dłuższą drogę przez pochłaniające pigmenty melaninowe.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Australii dochodzi do najszybszego na świecie wymierania ssaków. Tym razem jednak przyczyną tego procesu może być... brak ingerencji człowieka w przyrodę. Moje badania były motywowane tajemniczym zjawiskiem, jakie od 50 lat ma miejsce w Australii. Wzorzec znikania małych ssaków nie odpowiada wzorcowi, jaki zwykle widzimy, gdy ludzie wpływają na środowisko i zwierzęta giną, mówi profesor Rebecca Bliege Bird, antropolog z Pennsylvania State University.
      Profesor Bird i jej zespół pracowali na Wielkiej i Małej Pustyni Piaszczystej, zamieszkanej przez lud Martu. W połowie ubiegłego wieku Martu zostali wysiedleni, gdyż na ich ziemiach utworzono poligon rakietowy. W czasach, gdy Martu byli nieobecni na swoich ziemiach, wyginęło wiele rodzimych gatunków.
      W latach 80. ubiegłego wieku Martu zaczęli powracać na swoje tereny i prowadzić tradycyjny sposób życia, polegający na łowiectwie i zbieractwie. Obecnie istnieje tam hybrydowa ekonomia, z wieloma Martu żyjącymi tak, jak ich przodkowie, co oznacza też, że regularnie wypalają ziemię.
      Od czasu, gdy do Australii przybyli Europejczycy, na kontynencie wyginęło 28 endemicznych gatunków ssaków. Dochodzi też do lokalnych wyginięć. Zanim Martu zostali usunięci ze swojej ziemi żyło na niej wiele kanguroszczurów Bettongia lesueur oraz filanderków pręgowanych. Po wypędzeniu Martu zwierzęta te lokalnie wyginęły.
      Przed latami 50., w okresie zanim nawiązano z nimi kontakt, Martu mieli bardziej różnorodną dietę niż jakiekolwiek zwierzę w tym regionie. Gdy powrócili po przesiedleniu nadal mieli zróżnicowaną dietę, ale zniknęło w niej wiele roślin i zwierząt, mówi Bird.
      Uczona odkryła też, że przed pojawieniem się Europejczyków pies dingo stanowił część życia Martu. Ludzie, wypalając roślinność, utworzyli zróżnicowany krajobraz, który był ważny dla przetrwania dingo. Kiedy ludzi zabrakło dingo zaczęły mieć problemy i nie były w stanie kontrolować populacji mniejszych inwazyjnych drapieżników, takich jak koty i lisy, które zagroziły istnieniu małych rodzimych ssaków.
      Profesor Bird i jej zespół przyjrzeli się sieciom żywieniowym, interakcjom opisującym kto kim się posila, z okresu przed i po przesiedleniu Martu. Porównanie wykazało, że gdy ludzie zniknęli, gatunki inwazyjne mogły się łatwiej rozprzestrzenią, przez co zagroziły gatunkom rodzimym, a niektóre doprowadziły do zagłady. To najprawdopodobniej najpoważniejszy negatywny skutek braku tradycyjnego wypalania roślinności.
      Rodzime ludy Australii żyjące na pustyniach często wypalają duże połacie terenu, by ułatwić sobie polowania. Tam, gdzie polują Martu krajobraz poprzecinany jest obszarami roślinności na różnym etapie wegetacji i odrastania. Takie łaty roślinności służą też jako bufory nie pozwalające na zbytnie rozprzestrzenienie się ognia. Obszary trawiaste, na których Martu rzadko polują, mają tendencje do ulegania wielkim pożarom. Gdy w okolicy żyją Martu, wypalają oni trawy, co z jednej strony zapobiega olbrzymim pożarom, a z drugiej zwiększa populacje rodzimych zwierząt takich jak psy dingo, kangury czy jaszczurki. Populacje rozwijają się, pomimo śmiertelności związanej z działalnością Martu.
      Brak ludzi to poważna wyrwa w całej sieci. Gatunki inwazyjne mają wówczas ułatwione zadanie i łatwiej im też doprowadzić do wyginięcia rodzimej populacji, tłumaczy Bird.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Sahara jest obecnie jednym z najbardziej nieprzyjaznych miejsc do zamieszkania. Jednak nie zawsze tak było. Rysunki naskalne i wykopaliska archeologiczne dowodzą, że w przeszłości na Saharze mieszkało się łatwiej niż obecnie.
      Naukowcy z MIT-u, którzy przeanalizowali saharyjski pył osadzony u zachodnich wybrzeży Afryki w ciągu ostatnich 240 000 lat odkryli, że Sahara i cała Afryka Północna co 20 000 lat zmieniają klimat z suchego na wilgotny. Zdaniem uczonych taki okres zmian wskazuje, że główną siłą za nimi stojącą są zmiany osi Ziemi względem Słońca, które przyczyniają się do zmian nasłonecznienia pomiędzy porami roku i zmian siły monsunów.
      Naukowcy spekulują, że w przypadku Afryki Północnej, gdy Ziemia nachylona jest tak, by latem otrzymywać maksymalnie dużo światła słonecznego, w regionie dochodzi do zwiększenia aktywności monsunów, które prowadzą do pojawienia się bardziej wilgotnego klimatu nad Saharą i mamy do czynienia z jej zielenieniem. Gdy nachylenie osi planety ulega zmianie, monsuny słabną i Sahara staje się pustynią, jaką ją widzimy obecnie. Uzyskane przez nas wyniki sugerują, że klimat Afryki Północnej zmienia się do 20 000 lat i mamy na przemian zieloną i suchą Saharę, mówi profesor David McGee. Sądzimy, że wyniki te możemy wykorzystać do lepszego zrozumienia historii Sahary, tego, które okresy w dziejach były dobre dla osadnictwa czy rozprzestrzenienia się naszego gatunku i jego wyjścia z Afryki.
      Co roku wiatry wywiewają z Sahary setki milionów ton pyłu. Znaczna ich część trafia do Atlantyku. Osady te, tworzone przez setki tysięcy lat, są geologicznym zapisem historii klimatu Afryki Północnej. Warstwy z grubymi osadami pyłu to świadectwo suchego klimatu, te z cieńszymi osadami wskazują najprawdopodobniej na bardziej mokry okres.
      Wcześniejsze analizy rdzeni z osadami wydobytymi u wybrzeży Afryki wskazywały na regularne zmiany klimatu zachodzące co 100 000 lat, które naukowcy powiązali z epokami lodowymi. Warstwy z dużą zawartością pyłu miały pochodzić z okresów zlodowaceń, a te z mniejszą – z interglacjałów. Jednak autorzy najnowszych badań mówią, że wyniki takie stoją w sprzeczności z modelami klimatycznymi, które wskazują, że główną siłą napędową saharyskiego klimatu jest sezon monsunów, którego siła zależy od nachylenia osi Ziemi względem Słońca i ilości energii, jaką region ze Słońca otrzymuje. Musieliśmy poradzić sobie z faktem, że liczące 20 000 lat okresy zmian nachyleń osi Ziemi powinny być tym, co kontroluje siłę monsunów, ale w zapisach geologicznych widzieliśmy zbieżność z okresami zlodowaceń co 100 000 lat, mówi McGee.
      Żeby rozwiązać ten problem naukowcy opracowali własną technikę analizy rdzeni i wykorzystali ją do zbadania materiału pobranego przez uczonych z Uniwersytetu w Bordeaux, który został pozyskany z miejsc oddalonych zaledwie kilka kilometrów od miejsc pobrania wcześniejszych rdzeni. Naukowcy skupili się na badaniu koncentracji toru. Pierwiastek jest powstaje w oceanach w stałym tempie, w miarę rozpadu uranu obecnego w wodzie. Tor szybko łączy się z osadami dennymi, co pozwala stwierdzić, jak szybko osady te powstawały. W czasach, gdy mamy do czynienia z mniejszym osadzaniem się materiału, tor jest bardziej skoncentrowany w warstwach, a gdy materiał szybko się osadza, tor jest bardziej rozproszony.
      Odkryliśmy, że niektóre wzrosty tempa osadzania rzeczywiście były związane z faktem, że do oceanu trafiało więcej pyłu. Ale inne wzrosty były spowodowane szybszym rozpuszczaniem się węglanów w wodzie. W czasie epok lodowych ten obszar oceanu był bardziej kwasowy, więc węglany szybciej się rozpuszczały i tworzyło się więcej osadów. Mogło to sugerować większy napływ pyłu znad Sahary, ale w rzeczywistości tak nie było, mówi McGee.
      Gdy już wyjaśniono tajemnicze wzrosty co 100 000 lat okazało się, że pozostaje regularny wzorzec zmian zachodzących co 20 000 lat, który zgadza się ze zmianami nachylenia osi Ziemi i zmianami w sile monsunów.

      « powrót do artykułu
×
×
  • Create New...