Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Na przyszłorocznych letnich igrzyskach olimpijskich wszystkie podia będą wyprodukowane z materiałów z recyklingu

Recommended Posts

Organizatorzy zapowiedzieli, że podia wykorzystywane w czasie XXXII Letnich Igrzysk Olimpijskich w Tokio będą wykonane z plastikowych odpadów, przekazanych przez lokalne społeczności i zebranych z oceanu. To pierwszy raz, kiedy podia zostaną wyprodukowane z materiałów pochodzących z recyklingu. Organizatorzy Igrzysk powiedzieli, że by uzyskać ok. 100 podiów, będą potrzebować ok. 45 ton plastiku.

Toshiro Muto podkreśla, że takie posunięcie pomoże wysłać w świat przekaz dotyczący zrównoważonej gospodarki (to kluczowy, oczywiście poza sportem, temat XXXII LIO).

W ramach projektu zostanie wykorzystany plastik zebrany w placówkach lokalnej sieci supermarketów, a także odpady usunięte podczas czyszczenia oceanu.

Warto dodać, że wszystkie medale zostaną wykonane z poddanych recyklingowi e-odpadów. Japońscy sportowcy dostaną także oficjalny strój, który po części wyprodukowano z ubrań zebranych na terenie kraju.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Ciekawe ile ton odpadów wyprodukują w trakcie tych igrzysk - w Rio zdaje się dobili do 17 tysięcy ton. No ale podia będą z  recyklingu, świetna robota!

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy opisali nową jednostkę chorobową u ptaków. Plastikoza jest powodowana przez niewielkie kawałki plastiku, które wywołują stan zapalny w przewodzie pokarmowym. Została opisana u ptaków morskich, ale odkrywcy nie wykluczają, że to tylko wierzchołek góry lodowej. Na zewnątrz ptaki te wyglądają na zdrowe, jednak nie jest z nimi dobrze, mówi doktor Alex Bond z Muzeum Historii Naturalnej w Londynie. Ciągły stan zapalny prowadzi do bliznowacenia i deformacji tkanki, co negatywnie wpływa na rozwój i szanse przeżycia ptaków.
      To pierwsze przeprowadzone w ten sposób badania. Wykazały one, że spożywanie plastiku może poważnie uszkodzić przewód pokarmowy ptaków, dodaje uczony. Chorobę zidentyfikowano dotychczas u jednego gatunku, burzyka bladodziobego. Biorąc jednak pod uwagę stopień zanieczyszczenia środowiska naturalnego plastikiem, nie można wykluczyć, że dotyka ona też innych gatunków.
      Autorzy badań opisanych na łamach Journal of Hazardous Materials przez ponad 10 lat badali ptaki na wyspie Lord Howe. Zauważyli, że przebywające tam burzyki są najbardziej zanieczyszczonymi plastikiem ptakami na planecie. Zjadają plastik unoszący się na powierzchni wody, myląc go z pożywieniem. Naukowcy postanowili bliżej się temu przyjrzeć. W ten sposób odkryli nową jednostkę chorobową powodującą zwłóknienia tkanki i na wzór podobnych chorób – jak azbestoza – nadali jej nazwę plastikozy.
      Choroba ta, wywoływana przez ciągły stan zapalny spowodowany obecnością kawałków plastiku, prowadzi do formowania nadmiernego bliznowacenia i włóknienia tkanki, co zmniejsza jej elastyczność i prowadzi do zmiany struktury. Okazało się, że wśród burzyków na Lord Howe takie zwłóknienie żołądka gruczołowego jest czymś powszechnym. Dlatego też uznano to za nową jednostkę chorobową.
      Bliznowacenie tkanki narusza strukturę fizyczną żołądka gruczołowego. W miarę zwiększania się ekspozycji na plastik, tkanka poddana jest coraz poważniejszemu stanowi zapalnemu, aż do wystąpienia poważnych uszkodzeń. Dobrym przykładem plastikozy jest jej wpływ na gruczoły wydzielające soki trawienne. W miarę, jak ptak połyka kolejne kawałki plastiku, funkcje tych gruczołów ulegają coraz większemu upośledzeniu, aż w końcu dochodzi do całkowitej utraty struktury tkanki, mówi Bond. W wyniku utraty tych gruczołów, ptaki są bardziej podatne na infekcje oraz pasożyty, dochodzi również do zmniejszenie wchłaniania witamin.
      Bliznowacenie powoduje też, że żołądek staje się twardszy i sztywniejszy, co upośledza trawienie. Jest to szczególnie niebezpieczne dla piskląt i młodych ptaków, które mają mniejsze żołądki. Obecność plastiku zauważono w odchodach aż 90% młodych karmionych jeszcze przez rodziców. W ekstremalnych przypadkach prowadzi to do śmierci głodowej ptaka, którego żołądek zostaje całkowicie zapchany plastikiem. Plastikoza może mieć też wpływ na rozwój ptaków. Zauważono bowiem, że długość skrzydeł ptaków oraz waga zwierząt jest skorelowana z ilością plastiku w organizmach.
      Ptaki w sposób naturalny spożywają materię nieorganiczną, na przykład kamyki. Jednak naukowcy nie zauważyli, by prowadziło to do bliznowacenia w układzie pokarmowym. Za to obecnie w żołądku kamyki mogą rozbijać plastik na mniejsze kawałki, przez co jest on jeszcze bardziej niebezpieczny dla ptaków.
      Bond i jego zespół już wcześniej znaleźli mikroplastik w nerkach i śledzionie ptaków, gdzie również wywoływał stany zapalne, włóknienie i utratę struktury tkanki. Nie można wykluczyć, że w podobny sposób plastik wpływa na wiele innych gatunków zwierząt.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na Politechnice Gdańskiej prowadzony jest projekt badawczy dotyczący postępowania ze zużytymi łopatami turbin wiatrowych. Obecnie większość z nich trafia na składowiska, ale naukowcy z Gdańska mają nadzieję, że uda się je ponownie wykorzystać. To cenny materiał, jednak fakt, że jest to polimerowy kompozyt, znakomicie utrudnia jego ponowne wykorzystanie.
      Są to głównie struktury warstwowe, składające się z tkanin szklanych i węglowych oraz żywicy. Dzięki dużej zawartości włókien mają bardzo wysoki stosunek wytrzymałości do masy oraz znakomitą nośność i trwałość, ale te cechy równocześnie sprawiają, że są trudne do utylizacji, mówi profesor Magdalena Rucka z Katedry Wytrzymałości Materiałów. Nawet tam, gdzie łopaty są poddawane recyklingowi, odbywa się to metodami bardzo energochłonnymi i nieprzyjaznymi dla środowiska. W naszym projekcie chcemy zaproponować kompleksowe podejście do recyklingu łopat o możliwie niskiej energochłonności w stosunku do obecnie stosowanych metod, które wykorzysta dużą nośność łopaty i w efekcie przyczyni się do zmniejszenia bieżących problemów w budownictwie, w tym związanych ograniczoną dostępnością niektórych materiałów, dodaje profesor Rucka.
      Projekt składa się z trzech części. Pierwsza z nich, za którą odpowiada doktor Monika Zielińska, to projekt architektoniczny na wykorzystanie łopaty w elementach małej architektury, w tym w wiacie na rowery. W ramach drugiej, prowadzonej przez doktora Mikołaja Miśkiewicza, naukowcy sprawdzą, czy fragmenty łopat mogą być wykorzystane jako elementy nośne. Na początek ocenimy stan pozyskanych łopat po zakończonej eksploatacji na farmach wiatrowych. Jeżeli do zastosowań konstrukcyjnych będzie można wykorzystać całość lub większą część łopaty, uwzględniając ewentualne zniszczenia i rozwarstwienia materiału, to będziemy mogli wykonywać elementy konstrukcyjne oraz elementy małej architektury, stwierdza uczony. Większe fragmenty mogłyby zostać wykorzystane np. jako zadaszenia, ogrodzenia czy ścianki do wspinaczki.
      Za trzecią część odpowiada doktor Marzena Kurpińska. Będzie ona polegała na ocenie przydatności zmielonych łopat jako zamiennika kruszywa do mieszkanki betonowej. Naukowcy szacują, że łopaty mogłyby zastąpić nawet 40% naturalnego kruszywa. Wydobycie kruszyw naturalnych oraz metoda ich uszlachetniania przez płukanie i kruszenie w taki sposób, aby nadawały się do produkcji betonu wymaga dużych nakładów energii. Ponadto w części regionów występują problemy z dostępnością niektórych frakcji kruszywa. Widzimy możliwość, aby część kruszywa zastępować tym z recyklingu łopat. Wstępne badania, które przeprowadziliśmy są obiecujące, stwierdza doktor Kurpińska.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Każdego roku ludzie pozbywają się 92 milionów ton ubrań i innych tekstyliów. Mniej niż 15% z nich jest poddawanych recyklingowi, a jedną z przyczyn takiego stanu rzeczy jest trudność w sortowaniu. Naukowcy z University of Michigan stworzyli niedrogie włókna fotoniczne, które wszyte w ubrania pozwolą na określanie ich składu i automatyczne sortowanie.
      To jak kod kreskowy wszyty w tkaninę. Możemy przystosować włókna tak, by były widoczne gołym okiem, ujawniały się wyłącznie w bliskiej podczerwieni czy też stanowiły kombinację obu tych metod odczytu, mówi profesor Max Shtein.
      Metki na ubraniach często nie pomagają w sortowaniu. Mogą zostać przecież wycięte lub też nadruk na nich się spierze. Nowe włókno, po wszyciu w materiał, może pozostać niewidoczne, dopóki nie zostanie na taśmie sortującej oświetlone w podczerwieni. Systemy sortowania wykorzystujące podczerwień są już wykorzystywane do rozpoznawania materiałów i działają dzięki różnej sygnaturze optycznej, jaką mają materiały o różnym składzie. Oczywiście materiały wykorzystywane w tkaninach również mają różne sygnatury optyczne, jednak większość tkanin wykonana jest z różnych materiałów, przez co taka metoda sortowania nie do końca zdaje egzamin. Żeby dobrze przeprowadzić recykling musimy znać dokładny skład tkaniny. Firma zajmująca się np. recyklingiem bawełny nie będzie chciała płacić za materiał, który w 70% składa się z poliestru. Naturalne sygnatury optyczne nie zapewnią odpowiedniej precyzji, ale nasze fotoniczne włókno może dostarczyć wszystkich informacji, zapewnia doktor Brian Iezzi.
      Fotoniczne włókna, by spełniały swoje zadanie, powinny stanowić około 1% tkaniny. To może zwiększyć koszt gotowego produktu o około 25 centów, to mniej więcej tyle ile wynosi koszt tradycyjnej metki, stwierdza Iezzi. Co więcej, fotoniczne włókno może zawierać też wiele innych informacji, jak np. dane o miejscu i czasie produkcji, może pełnić też rolę hologramu potwierdzającego autentyczność produktu i jego pochodzenie od danego producenta. Tego typu dane konsument mógłby odczytać nawet za pomocą swojego smartfona. Zatem w przyszłości włókno wszyte w ubranie mogłoby stanowić źródło informacji i dla kupującego, i dla firmy prowadzącej recykling, dodaje Iezzi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Plastikowe słomki są niebezpieczne dla ekosystemów morskich, mogą łatwo ranić zwierzęta, nie są biodegradowalne, są rzadko zbierane i poddawane recyklingowi. Jednak ich alternatywy również sprawiają wiele problemów. Papierowe słomki w kontakcie z płynem łatwo rozmiękają, więc są pokrywane plastikiem. To nie do końca chroni przed rozmiękaniem gdyż plastik nie łączy się dobrze z papierem, powierzchnia takich słomek wzmaga musowanie napojów gazowanych, używany w nich plastik również nie jest biodegradowalny, a jako że słomki są wykonane z połączenia dwóch materiałów, są bardzo trudne w recyklingu.
      Naukowcy z Koreańskiego Instytutu Badawczego Technologii Chemicznych (KRICT) wykorzystali dobrze znany w pełni biodegradowalny poli(bursztynian butylenu) – PBS – do którego dodali nieco nanokryształów celulozy. Powstał materiał do pokrywania papierowych słomek. Jako że zawiera on nanokryształy celulozy, które są głównym składnikiem papieru, powstał w pełni biodegradowalny plastik, który ściśle przylega do papierowych rurek. Pokryte nim rurki nie rozmiękają, ani nie wzmagają musowania. Eksperymenty wykazały, że takie słomki dobrze sprawują się w napojach zimnych i gorących, sprawdzają się zarówno w wodzie, herbacie, napojach gazowanych, mleku i innych płynach.
      Koreańczycy badali też stopień rozmiękania ich produktu w porównaniu ze standardowymi rurkami papierowymi. Gdy standardową papierową rurkę zanurzyli na 1 minutę w wodzie o temperaturze 5 stopni Celsjusza, a następnie obciążyli ją masą 25 gramów, doszło do jej znacznego wygięcia. Nowa rurka niemal się nie wygięła, nawet po obciążeniu masą 50 gramów.
      Sprawdzono też tempo, w jakim nowe rurki ulegają biodegradacji. Badania prowadzono zanurzając próbki na głębokość 1,5–2 metrów w morzu w pobliżu miasta Pohang. Standardowe plastikowe rurki oraz rurki wykonane z kukurydzy nie uległy żadnej biodegradacji po 120 dniach. Konwencjonalne papierowe rurki straciły w tym czasie jedynie 5% wagi. Tymczasem rurki opracowane przez KRICT uległy całkowitemu rozkładowi.
      Oczywiście zastąpienie plastikowych słomek ich w pełni biodegradowalnymi alternatywami nie doprowadzi do natychmiastowej zmiany stanu środowiska. Jednak pozytywne skutki będą kumulowały się w czasie, a jeśli będziemy stopniowo zastępowali plastik jego równie dobrymi, ale bezpiecznymi dla ludzi i środowiska alternatywami, przyszły ekosystem Ziemi będzie miał się znacznie lepiej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z University of Chicago opracowali sposób na wytwarzanie materiału, który można produkować równie łatwo jak plastik, ale który przewodzi elektryczność tak dobrze, jak metale. Na łamach Nature uczeni opisali, w jaki sposób stworzyć dobrze przewodzący materiał, którego molekuły są nieuporządkowane. Jego istnienie przeczy temu, co wiemy o elektryczności.
      Nasze odkrycie pozwala na stworzenie nowej klasy materiałów, które przewodzą elektryczność, są łatwe w kształtowaniu i bardzo odporne na warunki zewnętrzne, mówi jeden z głównych autorów badań, profesor John Anderson. To sugeruje możliwość istnienia nowej grupy materiałów, niezwykle ważnej z technologicznego punktu widzenia, dodaje doktor Jiaze Xie.
      Materiały przewodzące są nam niezbędne w codziennym życiu. To dzięki nim funkcjonują urządzenia napędzane prądem elektrycznym. Najstarszą i największa grupą takich materiałów są metale, jak miedź czy złoto. Około 50 lat temu stworzono przewodniki organiczne, w których materiał wzbogacany jest o dodatkowe atomy. Takie przewodniki są bardziej elastyczne i łatwiej jest je przetwarzać niż metale, jednak są mało stabilne i w niekorzystnych warunkach – przy zbyt wysokiej temperaturze czy wilgotności – mogą tracić swoje właściwości.
      I metale i przewodniki organiczne mają pewną cechę wspólną – są zbudowane z uporządkowanych molekuł. Dzięki temu elektrony mogą z łatwością się w nich przemieszczać. Naukowcy sądzili więc, że warunkiem efektywnego przewodnictwa jest uporządkowana struktura przewodnika.
      Jiaze Xie zaczął jakiś czas temu eksperymentować z wcześniej odkrytymi, jednak w dużej mierze pomijanymi, materiałami. Długie łańcuchy węgla i siarki poprzeplatał atomami niklu. Ku zdumieniu jego i jego kolegów okazało się, że taka nieuporządkowana struktura świetnie przewodzi prąd. Co więcej, okazała się bardzo stabilna. Podgrzewaliśmy nasz materiał, schładzaliśmy, wystawialiśmy na działanie powietrza i wilgoci, nawet zamoczyliśmy w kwasie i nic się nie stało, mówi Xie. Najbardziej jednak zdumiewający był fakt, że struktura materiału była nieuporządkowana. On nie powinien tak dobrze przewodzić prądu. Nie mamy dobrej teorii, która by to wyjaśniała, przyznaje profesor Anderson.
      Andreson i Xie poprosili o pomoc innych naukowców ze swojej uczelni, by wspólnie zrozumieć, dlaczego materiał tak dobrze przewodzi elektryczność. Obecnie naukowcy sądzą, że tworzy on warstwy. I pomimo, że poszczególne warstwy nie są uporządkowane, to tak długo, jak się ze sobą stykają, elektrony mogą pomiędzy nimi swobodnie przepływać.
      Jedną z olbrzymich zalet nowego materiału jest możliwość łatwego formowania. Metale zwykle trzeba stopić, by uzyskać odpowiedni kształt. To proces nie tylko energochłonny, ale i poważnie ograniczający ich zastosowanie, gdyż oznacza, że inne elementu budowanego układu czy urządzenia muszą wytrzymać wysokie temperatury podczas produkcji. Nowy materiał pozbawiony jest tej wady. Można go uzyskiwać w temperaturze pokojowej i używać tam, gdzie występują wysokie temperatury, środowisko kwasowe, zasadowe czy wysoka wilgotność. Dotychczas wszystkie tego typu zjawiska poważnie ograniczały zastosowanie nowoczesnych technologii.
      Badania nad nowym materiałem są finansowane przez Pentagon, Departament Energii oraz Narodową Fundację Nauki.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...