Sign in to follow this
Followers
0

Komputery kwantowe o krok bliżej. Przełomowe pomiary dokładności kwantowej bramki logicznej
By
KopalniaWiedzy.pl, in Technologia
-
Similar Content
-
By KopalniaWiedzy.pl
Dwie amerykańskie grupy badawcze stworzyły – niezależnie od siebie – pierwsze kwantowe procesory, w których rolę kubitów odgrywają atomy. To potencjalnie przełomowe wydarzenie, gdyż oparte na atomach komputery kwantowe mogą być łatwiej skalowalne niż dominujące obecnie urządzenia, w których kubitami są uwięzione jony lub nadprzewodzące obwody.
W 2020 roku firma Heoneywell pochwaliła się, że jej komputer na uwięzionych jonach osiągnął największą wartość „kwantowej objętości”. Tego typu maszyny, mają tę zaletę, że jony w próżni jest dość łatwo odizolować od zakłóceń termicznych, a poszczególne jony w chmurze są nieodróżnialne od siebie. Problemem jest jednak fakt, że jony wchodzą w silne interakcje, a do manipulowania nimi trzeba używać pól elektrycznych, co nie jest łatwym zadaniem.
Z drugiej zaś strony mamy kwantowe maszyny wykorzystujące obwody nadprzewodzące. Za najpotężniejszy obecnie procesor kwantowy z takimi obwodami uznaje się 127–kubitowy Eagle IBM-a. Jednak wraz ze zwiększaniem liczby kubitów, urządzenia tego typu napotykają coraz więcej problemów. Każdy z kubitów musi być w nich wytwarzany indywidualnie, co praktycznie uniemożliwia wytwarzanie identycznych kopii, a to z kolei – wraz z każdym dodanym kubitem – zmniejsza prawdopodobieństwo, że wynik obliczeń prowadzonych za pomocą takiego procesora będzie prawidłowy. Jakby jeszcze tego było mało, każdy z obwodów musi być schłodzony do niezwykle niskiej temperatury.
Już przed sześcioma laty zespoły z USA i Francji wykazały, że możliwe jest przechowywanie kwantowej informacji w atomach, którymi manipulowano za pomocą szczypiec optycznych. Od tamtego czasu Amerykanie rozwinęli swój pomysł i stworzyli 256-bitowy komputer kwantowy bazujący na tej platformie. Jednak nikt dotychczas nie zbudował pełnego obwodu kwantowego na atomach.
Teraz dwa niezależne zespoły zaprezentowały procesory bazujące na takich atomach. Na czele grupy z Uniwersytetu Harvarda i MTI stoi Mikhail Lukin, który w 2016 roku opracował ten oryginalny pomysł. Zespołem z University of Wisonsin-Madison, w pracach którego biorą też udział specjaliści z firm ColdQuant i Riverlane, kieruje zaś Mark Saffman. Zespół Lukina wykorzystał atomy rubidu, zespół Saffmana użył zaś cezu.
Jeśli mamy obok siebie dwa atomy w stanie nadsubtelnym, to nie wchodzą one w interakcje. Jeśli więc chcemy je splątać, jednocześnie wzbudzamy je do stanu Rydberga. W stanie Rydberga wchodzą one w silne interakcje, a to pozwala nam je szybko splątać. Później możemy z powrotem wprowadzić je w stan nadsubtelny, gdzie można nimi manipulować za pomocą szczypiec optycznych, wyjaśnia Dolev Bluvstein z Uniwersytetu Harvarda.
Grupa z Harvarda i MIT wykorzystała stan nadsubtelny do fizycznego oddzielenia splątanych atomów bez spowodowania dekoherencji, czyli utraty kwantowej informacji. Gdy każdy z atomów został przemieszczony na miejsce docelowe został za pomocą lasera splątany z pobliskim atomem. W ten sposób naukowcy byli w stanie przeprowadzać nielokalne operacje bez potrzeby ustanawiania specjalnego fotonicznego lub atomowego łącza do przemieszczania splątania w obwodzie.
W ten sposób uruchomiono różne programy. Przygotowano m.in. kubit logiczny, składający się z siedmiu kubitów fizycznych, w którym można było zakodować informacje w sposób odporny na pojawienie się błędów. Naukowcy zauważają, że splątanie wielu takich logicznych kubitów może być znacznie prostsze niż podobne operacje na innych platformach. Istnieje wiele różnych sztuczek, które są stosowane by splątać kubity logiczne. Jednak gdy można swobodnie przesuwać atomy, to jest to bardzo proste. Jedyne, co trzeba zrobić to stworzyć dwa niezależne kubity logiczne, przesunąć je i przemieszać z innymi grupami, wprowadzić za pomocą lasera w stan Rydberga i utworzyć pomiędzy nimi bramkę, stwierdza Dluvstein. Te technika, jak zapewnia uczony, pozwala na przeprowadzenie korekcji błędów i splątania pomiędzy kubitami logicznymi w sposób niemożliwy do uzyskania w obwodach nadprzewodzących czy z uwięzionymi jonami.
Grupa z Wisconsin wykorzystała inne podejście. Naukowcy nie przemieszczali fizycznie atomów, ale za pomocą lasera manipulowali stanem Rydberga i przemieszczali splątanie po macierzy atomów. Mark Saffman podaje przykład trzech kubitów ustawionych w jednej linii. Za pomocą laserów oświetlamy kubit po lewej i kubit centralny Zostają one wzbudzone do stanu Rydberga i splątane. Następnie oświetlamy atom centralny oraz ten po prawej. W ten sposób promienie laserów kontrolują operacje na bramkach, ale tym, co łączy kubity są interakcje zachodzące w stanach Rydberga.
Grupa Saffmana wykorzystała opracowaną przez siebie technikę do stworzenia składających się z sześciu atomów stanów Greenbergera-Horne'a-Zeilingera. Wykazali też, że ich system może działać jak kwantowy symulator służący np. do szacowania energii molekuły wodoru. Dzięki temu, że nie trzeba było przesuwać atomów, zespół z Wisconsin osiągnął kilkaset razy większe tempo pracy niż zespół z Harvarda i MIT, jednak ceną była pewna utrata elastyczności. Saffman uważa, że w przyszłości można będzie połączyć oba pomysły w jeden lepszy system.
Na razie oba systemy korzystają z niewielkiej liczby kubitów, konieczne jest też wykazanie wiarygodności obliczeń oraz możliwości ich skalowania. Chris Monroe, współtwórca pierwszego kwantowego kubita – który oparty był na uwięzionych jonach – uważa, że obie grupy idą w dobrym kierunku, a kubity na atomach mogą osiągnąć wiarygodność 99,9% i to bez korekcji błędów. Obecnie osiągamy taki wynik na uwięzionych jonach i – mimo że technologia wykorzystania atomów jest daleko z tyłu – nie mam wątpliwości, że w końcu osiągną ten sam poziom, stwierdza.
« powrót do artykułu -
By KopalniaWiedzy.pl
Najnowszy numer Nature przynosi przełomowe informacje na temat praktycznego wykorzystania komputerów kwantowych. Naukowcy z Uniwersytetu Nowej Południowej Walii (UNSW) wykazali, że możliwe jest stworzenie niemal wolnego od błędów krzemowego procesora kwantowego. Dzisiejsza publikacja pokazuje, że obliczenia przeprowadzane przez nasz procesor były w ponad 99% wolne od błędów. Gdy odsetek błędów jest tak mały, możliwym staje się ich wykrywanie i korygowanie w czasie rzeczywistym. A to oznacza, że można wybudować skalowalny komputer kwantowy wykonujący wiarygodne obliczenia, wyjaśnia profesor Andrea Morello z UNSW.
Morello stoi na czele zespołu złożonego z naukowców z Australii, USA, Japonii i Egiptu. Ich celem jest zbudowanie uniwersalnego komputera kwantowego, czyli maszyny, której możliwości obliczeniowe nie będą ograniczone do jednego rodzaju zadań. Badania, których wyniki właśnie opublikowaliśmy, to bardzo ważny krok w tym kierunku, podkreśla uczony.
Jednak, co niezwykle ważne, artykuł Morello i jego zespołu to jeden z trzech tekstów z Nature, których autorzy informują o niezależnym od siebie osiągnięciu niskiego odsetka błędów w opartych na krzemie procesorach kwantowych.
Z najnowszego Nature, którego redakcja zdecydowała się na zilustrowanie kwantowego przełomu na okładce, dowiadujemy się, że wiarygodność operacji obliczeniowych na jednym kubicie osiągnięta przez Morello i jego zespół wyniosła 99,95%, a operacji na dwóch kubitach – 99,37%. Niezależnie od nich zespół z holenderskiego Uniwersytetu Technologicznego w Delft, prowadzony przez Lievena Vandersypena osiągnął wiarygodność rzędu 99,87% przy operacjach na jednym kubicie i 99,65% podczas operacji dwukubitowych. W trzecim z artykułów czytamy zaś o pracach naukowców z japońskiego RIKEN, w trakcie których grupa Seigo Taruchy mogła pochwalić się wiarygodnością 99,84% przy działaniach na jednym kubicie i 99,51% przy pracy z dwoma kubitami.
Wydajność procesorów z UNSW i Delft została certyfikowana zaawansowaną metodą gate set tomography opracowaną przez amerykańskie Sandia National Laboratories, a wyniki certyfikacji zostały udostępnione innym grupom badawczym.
Zespół profesora Morello już wcześniej wykazał, że jest w stanie utrzymać kwantową informację w krzemie przez 35 sekund. W świecie kwantowym 35 sekund to wieczność. Dla porównania, słynne nadprzewodzące komputery kwantowe Google'a i IBM-a są w stanie utrzymać taką informację przez około 100 mikrosekund, czyli niemal milion razy krócej, zauważa Morello. Osiągnięto to jednak izolując spiny (kubity) od otoczenia, co z kolei powodowało, że wydaje się niemożliwym, by kubity te mogły wejść ze sobą w interakcje, a więc nie mogły wykonywać obliczeń.
Teraz z artykułu w Nature dowiadujemy się, że udało się pokonać problem izolacji wykorzystując elektron okrążający dwa jądra atomu fosforu.
Gdy masz dwa jądra połączone z tym samym elektronem, może zmusić je do wykonywania operacji kwantowych, stwierdza doktor Mateusz Mądzik, jeden z głównych autorów eksperymentów. Gdy nie operujesz na elektronie, jądra te mogą bezpiecznie przechowywać kwantowe informacje. Teraz jednak mamy możliwość, by jądra wchodziły w interakcje za pośrednictwem elektronu i w ten sposób możemy wykonywać uniwersalne operacje kwantowe, które mogą rozwiązywać każdy rodzaj problemów obliczeniowych, wyjaśnia Mądzik.
Gdy splączemy spiny z elektronem, a następnie możemy elektron ten przesunąć w inne miejsce i splątać go z kolejnymi kubitami, tworzymy w ten sposób duże macierze kubitów zdolnych do przeprowadzania solidnych użytecznych obliczeń, dodaje doktor Serwan Asaad.
Jak podkreśla profesor David Jamieson z University of Melbourne, atomy fosforu zostały wprowadzone do krzemowego procesora za pomocą tej samej metody, jaka jest obecnie używana w przemyśle półprzewodnikowym. To pokazuje, że nasz kwantowy przełom jest kompatybilny z obecnie używanymi technologiami.
Wszystkie obecnie używane komputery wykorzystują systemy korekcji błędów i redundancji danych. Jednak prawa mechaniki kwantowej narzucają ścisłe ograniczenia na sposób korekcji błędów w maszynach kwantowych. Konieczne jest osiągnięcie odsetka błędów poniżej 1%. Dopiero wtedy można zastosować kwantowe protokoły korekcji błędów. Teraz, gdy udało się ten cel osiągnąć, możemy zacząć projektować skalowalne krzemowe procesory kwantowe, zdolne do przeprowadzania użytecznych wiarygodnych obliczeń, wyjaśnia Morello.
« powrót do artykułu -
By KopalniaWiedzy.pl
IBM zaprezentował 127-kubitowy procesor kwantowy Eagle. Dzięki niemu, jak zapewnia koncern, klienci firmy będą mogli wykorzystać niedostępne dotychczas zasoby obliczeniowe, co ma się stać krokiem milowym w kierunku wykorzystania obliczeń kwantowych w codziennej praktyce. Eagle ma bowiem wkrótce zostać udostępniony wybranym partnerom IBM-a.
Postrzegamy Eagle'a jako krok na drodze technologicznej rewolucji w historii maszyn obliczeniowych. W miarę, jak procesory kwantowe są rozbudowywane, każdy dodatkowy kubit dwukrotnie zwiększa ilość pamięci, jaką potrzebują komputery klasyczne, by symulować taki procesor. Spodziewamy się, że komputery kwantowe przyniosą realne korzyści, gdyż rosnąca złożoność procesów obliczeniowych, jakie są w stanie wykonać, przekroczy możliwości komputerów klasycznych, czytamy w informacji prasowej IBM-a.
Inżynierowie Błękitnego Giganta nie mieli łatwego zadania. Prace praktyczne i teoretyczne nad maszynami kwantowymi, opartymi na zasadach mechaniki kwantowej, są prowadzone od dziesięcioleci i od dawna wiemy, że komputery takie są w stanie przeprowadzać obliczenia niedostępne maszynom klasycznym. Jednak ich zbudowanie jest niezwykle trudne. Nawet najmniejszy wpływ czynników zewnętrznych może spowodować dekoherencję kubitów, czyli doprowadzić do stanu, w którym zawarta w nich informacja zostanie utracona.
Eagle zawiera niemal 2-krotnie więcej kubitów niż jego poprzednik, 65-kubitowy Hummingbird. Jednak jego powstanie wymagało czegoś więcej, niż tylko dodania kubitów. Inżynierowe IBM-a musieli opracować nowe i udoskonalić istniejące techniki, które – jak zapewniają – staną się podstawą do stworzenia ponad 1000-kubitowego układu Condor.
Kolejnym niezwykle ważnym elementem nowego procesora jest wykorzystanie techniki multiplekosowania odczytu, znaną już z procesora Hummingbird R2. We wcześniejszych układach kwantowych każdy kubit wymagał zastosowania osobnego zestawu elektroniki zajmującej się odczytem i przesyłaniem danych. Taka architektura może sprawdzić się przy kilkudziesięciu kubitach, jednak jest zbyt nieporęczna i niepraktyczna przy ponad 100 kubitach, nie wspominając już o 1121-kubitowym Condorze, który ma powstać za 2 lata. Multipleksowanie odczytu polega na łączeniu sygnałów odczytowych z wielu kubitów w jeden, dzięki czemu można znakomicie zmniejszyć ilość okablowania i komponentów elektronicznych, co z kolei pozwala na lepsze skalowanie całości.
Najbardziej interesującymi informacjami, których jeszcze nie znamy, są wyniki testów Quantum Volume (QV) i Circuit Layer Operations Per Second (CLOPS). Quantum Volume to stworzony przez IBM-a system pomiaru wydajności kwantowego komputera jako całości. Bierze pod uwagę nie tylko same kubity, ale również interakcje pomiędzy nimi, działania poszczególnych elementów komputera, w tym błędy obliczeniowe, błędy pomiarowe czy wydajność kompilatora. Im większa wartość QV, tym bardziej złożone problemy może rozwiązać komputer kwantowy. Z kolei zaproponowany niedawno przez IBM-a CLOPS to benchmark określający, na ilu obwodach kwantowych procesor jest w stanie wykonać operacje w ciągu sekundy. Maszyna Eagle nie została jeszcze poddana testom wydajnościowym i jakościowym.
W ubiegłym roku Honeywell ogłosił, że jego System Model H1, korzystający z zaledwie 10 kubitów, osiągnął w teście QV wartość 128. Nieco wcześniej zaś 27-kubitowy system IBM-a mógł się pochwalić QV 64. Widzimy zatem, że sama liczba kubitów nie mówi jeszcze niczego o wydajności samej maszyny.
« powrót do artykułu -
By KopalniaWiedzy.pl
Wiele współczesnych komputerów kwantowych zapisuje informacje w nietrwałych stanach kwantowych, które bardzo trudno jest utrzymać i skalować. Rozwiązaniem problemu może być trwały nanomechaniczny kubit.
Kwantowe bity zbudowane z wibrujących węglowych nanorurek i par kropek kwantowych mogą być bardzo odporne na zakłócenia zewnętrzne. Tak przynajmniej wynika z obliczeń wykonanych przez Fabio Pistolesiego z francuskiego Narodowego Centrum Badań Naukowych i jego kolegów z Hiszpanii i USA. Obliczenia wskazują bowiem, że czas dekoherencji takiego nanomechanicznego kubitu były bardzo długi, co czyni tę architekturę obiecującym elementem komputerów kwantowych.
Komputery kwantowe mogą, przynajmniej teoretycznie, dokonywać wielu obliczeń znacznie szybciej niż maszyny klasyczne. Wynika to z samych zasad fizyki kwantowej. Najmniejszą jednostką informacji, jaką posługują się komputery, jest bit, reprezentowany przez cyfrę „0” lub „1”. W 4 bitach możemy zapisać 16 (24) kombinacji zer i jedynek. W komputerze klasycznym w danym momencie możemy zapisać jedną z tych kombinacji – gdyż każdy z bitów może przyjąć pozycję albo „0” albo „1” – i wykonać na niej działania.
Jednak komputery kwantowe nie korzystają z bitów, a z kubitów (bitów kwantowych). Kubitem może być np. elektron. A z praw mechaniki kwantowej wiemy, że nie ma on jednej ustalonej wartości „0” lub „1”, ale przyjmuje obie jednocześnie. To tzw. superpozycja. Zatem w komputerze kwantowym w danym momencie zapiszemy wszystkie 16 kombinacji i wykonamy na nich działania. Innymi słowy, 4-bitowy komputer kwantowy powinien być – przynajmniej w teorii – aż 16-krotnie szybszy od swojego klasycznego odpowiednika. Obecnie zaś korzystamy z procesorów 64-bitowych, więc liczba możliwych kombinacji zer i jedynek wynosi w ich przypadku 264.
Problem jednak w tym, że stany kwantowe są bardzo nietrwałe i w wyniku interakcji z czynnikami zewnętrznymi kubit może ulec dekoherencji, czyli utracić swój stan kwantowy (superpozycję) i stać się „standardową” jedynką albo zerem. Widzimy więc, jak istotny jest czas dekoherencji. Im jest on dłuższy, tym więcej czasu zostaje na przeprowadzenie obliczeń.
Obiecującymi kandydatami na kubity są obwody nadprzewodzące, jony uwięzione w pułapkach magnetycznych czy kropki kwantowe. Teraz międzynarodowa grupa uczonych przekonuje, że możliwe jest też zbudowanie stabilnego nanomechanicznego kubitu.
Kubit taki miały się składać z wiszącej węglowej nanorurki działającej jak rezonator, której wibracje zależą od stanów elektronicznych dwóch kropek kwantowych znajdujących się w samej nanorurce. Sprzężenie pomiędzy kropkami a nanorurką powoduje, że rezonator staje się silnie anharmoniczny. To oznacza, że okres drgań jest zależny od jego amplitudy. W takim rezonatorze bardzo łatwo wykryć nawet najmniejsze zmiany amplitudy. Pistolesi uważa, że właśnie amplitudę można wykorzystać do przechowywania kwantowej informacji.
Innymi słowy, najmniejsza możliwa amplituda drgań (kwantowy stan podstawowy) odpowiada „0”, a kolejna najmniejsza amplituda (pierwszy stan wzbudzenia) odpowiada „1”. Stany te można z łatwością odczytać za pomocą mikrofal. Fakt, że częstotliwość pracy oscylatora zmienia się, gdy zmienia się jego amplituda, pozwala nam na odczytywanie kubitu i manipulowanie nim, wyjaśnia swoją koncepcję Pistolesi. Uczony przekonuje, że taki kubit byłby bardzo trwały. Zanim pojawi się dekoherencja, dojdzie w nim do milionów oscylacji.
Wyniki badań, chociaż obiecujące, nie rozwiązują wszystkich problemów. Naukowcy wciąż nie wiedzą, w jaki sposób wprowadzić do takiego systemu na tyle silną anharmoniczność, by całość poddawała się kontroli.
Być może zaproponowana przez Pistolesiego architektura nigdy nie trafi do komputerów kwantowych. Jednak może się ona przydać do budowy niezwykle czułych detektorów kwantowych, gdyż oscylatory takie byłyby podatne na działanie klasycznych sił. Można by je więc wykorzystać do wykrywania niewielkich zmian przyspieszenia, pola elektrycznego czy magnetycznego.
Teraz badacze chcą zbudować zaproponowany przez siebie kubit i przetestować jego działanie.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.