Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Wiek danej osoby można oceniać na różne sposoby, np. na podstawie głosu czy wyglądu, można też zajrzeć do jej dowodu tożsamości. Co jednak zrobić w sytuacji, gdy ten ktoś nie żyje i nie ma dostępu do żadnych jego danych? Naukowcy z uniwersytetów w Kopenhadze i Aarhus uciekli się do metody datowania radiowęglowego białek soczewki oka – krystalin (PLoS ONE).

Występują one w cytoplazmie włókien soczewkowych. Są upakowane tak ściśle i w tak charakterystyczny sposób, że zachowują się jak kryształy (stąd ich nazwa). To one odpowiadają za przejrzystość soczewki oraz załamywanie wpadającego do oka światła. Struktury krystalin są tworem komórek pracujących od momentu poczęcia do 1.-2. roku życia. Gdy proces się kończy, krystaliny nie zmieniają się zasadniczo przez resztę życia.

Węgiel jest pierwiastkiem wchodzącym w skład wszystkich organizmów żywych. Ciągle "przepływa" przez łańcuch pokarmowy. Skądinąd wiadomo, że radioaktywny węgiel C-14 powstaje w górnych warstwach atmosfery w wyniku oddziaływania neutronów z promieniowania kosmicznego na atomy 14N i 13C.

1n + 14N → 14C + 1H
1n + 13C → 14C

Dopóki więc organizm żyje, ilość węgla C-14 w jego tkankach jest stała – taka sama jak w atmosferze. Gdy zwierzę, roślina lub człowiek umiera, ilość radioaktywnego węgla zaczyna się powoli zmniejszać.

Podczas zimnej wojny przeprowadzono wiele próbnych wybuchów jądrowych. Wskutek tego ilość węgla C-14 w atmosferze niemal się podwoiła. Po wprowadzeniu zakazu prób jądrowych w atmosferze, kosmosie i pod wodą (układ z 5 VIII 1963 r.) zaczęła spadać i po jakimś czasie osiągnęła swój normalny poziom.

Ponieważ po zakończeniu prac konstrukcyjnych krystaliny się nie zmieniają, można określić zawartość C-14 w atmosferze w momencie ich tworzenia. Dzięki akceleratorowi cząstek naukowcy z Uniwersytetu w Aarhus mogą wyliczyć ilość C-14 (wystarczy do tego zaledwie 1 miligram tkanki z oka) i określić na tej podstawie wiek.

Metoda Duńczyków przyda się nie tylko kryminologom. Profesor Niels Lynnerup wyjaśnia, że datowanie radiowęglowe białek i innych związków organicznych pozwoli określić czas powstawania oraz regeneracji określonych tkanek czy komórek, np. nowotworowych.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Oko – narząd wzroku człowieka – pod wieloma względami zachwyca i zdumiewa nie tylko precyzją widzenia oraz możliwością rozróżniania milionów barw, ale również umiejętnością funkcjonowania w niezwykle szerokim przedziale intensywności światła, która w naturalnych warunkach potrafi zmieniać się nawet o czynnik równy dziesięciu miliardom!
      Takie wyzwanie wymaga od fotoreceptorów dysponowania krańcowo odmiennymi, a nawet pozornie sprzecznymi atrybutami: z jednej strony bardzo wysoką czułością, z drugiej zaś strony fotostabilnością. Łączenie tego typu skrajności możliwe jest dzięki aktywności wielu mechanizmów regulacyjnych, funkcjonujących na różnych poziomach organizacji narządu wzroku. Wśród nich ważnym oraz doskonale znanym jest zwężanie oraz rozszerzanie źrenicy w odpowiedzi na zmiany intensywności światła, przypominające działanie przysłony fotograficznej.
      Okazuje się, iż w oku człowieka funkcjonuje również inny ważny mechanizm regulacyjny, przypominający z kolei działanie okularów fotochromowych. Mechanizm ten dynamicznie osłabia intensywność światła docierającego do fotoreceptorów przy wysokich natężeniach, działając w przeciwnym kierunku przy niskim poziomie oświetlenia. W tę nieznaną dotychczas aktywność regulacyjną na poziomie molekularnym zaangażowane są bezpośrednio luteina oraz zeaksantyna, barwniki ksantofilowe obecne w siatkówce oka człowieka, w szczególności w jej centralnym obszarze zwanym plamką żółtą.
      Odkrycie tego mechanizmu zostało właśnie ogłoszone przez międzynarodowy zespół badaczy pracujących pod kierunkiem prof. Wiesława Gruszeckiego z Uniwersytetu Marii Curie-Skłodowskiej w Lublinie. Zespół został utworzony w celu realizacji projektu badawczego w programie TEAM Fundacji na rzecz Nauki Polskiej, współfinansowanym w ramach Programu Operacyjnego Inteligentny Rozwój Unii Europejskiej.
      Jak mówi prof. Gruszecki, lider projektu: Aktywność interdyscyplinarnego zespołu złożonego z fizyków, medyków oraz chemików, zarówno eksperymentalnych, jak i reprezentujących podejścia obliczeniowe, stworzyła unikalne możliwości badania mechanizmów molekularnych funkcjonujących w oku człowieka oraz poszukiwania odpowiedzi na pytania formułowane z perspektywy wielu, dopełniających się obszarów poznawczych. Co równie ważne, zaangażowanie w pracach zespołu uznanych ekspertów, jak prof. Robert Rejdak z Uniwersytetu Medycznego w Lublinie czy prof. Jacek Czub z Politechniki Gdańskiej, ramię w ramię z adeptami nauki – doktorantami oraz studentami – stanowiło „mieszankę wybuchową” doświadczenia i młodzieńczego entuzjazmu, czyniąc naszą współpracę nie tylko dynamiczną, twórczą i wydajną, ale również pełną radości oraz satysfakcji na poziomie relacji społecznych.
      Badacze pokazali, że ksantofile obecne w plamce żółtej oka, w odpowiedzi na zmiany intensywności światła, ulegają odwracalnej fotoizomeryzacji z konfiguracji molekularnej trans do cis, skutkującej zmianą orientacji tych barwników w błonach lipidowych. Co istotne, tego typu zmiana położenia w stosunku do płaszczyzny siatkówki oraz kierunku padających promieni powoduje radykalne zmiany pochłaniania światła przez tę grupę barwników. Przejawia się to przepuszczaniem większej liczby fotonów w kierunku fotoreceptorów, gdy poziom natężenia jest niski, oraz pochłanianiem promieniowania w warunkach jego nadmiernej intensywności.
      Aktywność ta chroni siatkówkę przed fotouszkodzeniami w warunkach silnego oświetlenia, ułatwiając jednocześnie widzenie barwne oraz precyzyjne przy stosunkowo słabym świetle. Jak podkreślają badacze w swoim artykule, dodatkową, istotną cechą odkrytego mechanizmu jest jego bardzo krótki czas aktywacji (poniżej jednej tysięcznej sekundy) w stosunku do typowych reakcji źrenicy (czasy dłuższe niż 0,5 sekundy). Oznacza to, że ochrona fotoreceptorów włącza się automatycznie, zanim jeszcze dotrze do naszej świadomości informacja o zagrożeniu.
      Co równie istotne, źrenica zwęża się jedynie do średnicy ok. 2 mm, pozostawiając niechronioną centralną część siatkówki, która jest odpowiedzialna za widzenie barwne oraz precyzyjne. Ochrona tego właśnie obszaru realizowana jest przez barwniki ksantofilowe oraz przez mechanizm regulacyjny porównany przez badaczy do „żaluzji” otwieranych i zamykanych na poziomie molekularnym w odpowiedzi na zmiany intensywności światła. Fakt, iż zasadniczym elementem aktywnym tych „żaluzji” są cząsteczki luteiny oraz zeaksantyny, które nie są syntetyzowane w organizmie człowieka, wskazuje na konieczność uwzględnienia ich w diecie tak, aby oczy służyły nam zarówno przy słabym, jak i intensywnym oświetleniu przez długie lata naszego życia.
      O skrajnie negatywnych skutkach niedoboru luteiny oraz zeaksantyny w diecie świadczy utrata widzenia spowodowana degeneracją plamki żółtej w siatkówce oka postępującą wraz z wiekiem (AMD, ang. Age-Related Macular Degeneration). Na szczęście w zadaniu komponowania diety oraz doboru właściwych produktów żywnościowych pomaga nam zmysł wzroku, na co wskazuje fakt, iż luteina i zeaksantyna, jako barwniki ksantofilowe, charakteryzują się ciepłą, żółtopomarańczową barwą – mówi prof. Gruszecki.
      Praca przedstawiająca odkrycie mechanizmu „żaluzji molekularnych” w siatkówce oka człowieka ukazała się w czasopiśmie The Journal of Physical Chemistry.
      Jak zauważają autorzy artykułu, warty podkreślenia jest fakt, iż podobny proces odwracalnej fotoizomeryzacji barwników polienowych wykorzystany został przez naturę na drodze ewolucji biologicznej jako centralny mechanizm leżący u podstaw funkcjonowania dwóch zasadniczo odmiennych aktywności na poziomie fizjologicznym w oku człowieka. Fotoizomeryzacja cis-trans retinalu w rodopsynie uruchamia kaskadę sygnałów w procesie widzenia, zaś fotoizomeryzacja luteiny i zeaksantyny w plamce żółtej odpowiada za kształtowanie dynamicznej regulacji intensywności światła docierającego do fotoreceptorów na drodze mechanizmu „żaluzji molekularnych”.
      W poniższym załączniku dostępny jest artykuł wraz z grafiką przedstawiającą ideę eksponatu w muzeum nauki, obrazującego aktywność mechanizmu „żaluzji molekularnych” w oku człowieka.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Uraz oka, np. zadrapanie rogówki, powoduje, że do soczewki "wysyłane" są komórki odpornościowe, które mają ją chronić.
      By nie zaburzać widzenia, soczewka oka nie jest unaczyniona. Brak waskulatury powodował, że przez długi czas naukowcy sądzili, że komórki odpornościowe nie mają się tu jak dostać. Parę lat temu zespół z Uniwersytetu Thomasa Jeffersona wykazał jednak, że to nieprawda i że w odpowiedzi na degenerację komórki odpornościowe są rekrutowane do soczewki i pojawiają się również w rogówce, siatkówce i ciele szklistym. Prace ekipy dr Sue Menko sugerowały, że komórki odpornościowe pochodzą z ciała rzęskowego (łac. corpus ciliare), a więc części oka otaczającej tęczówkę i łączącej ją z naczyniówką.
      Dr Menko dodaje, że komórki odpornościowe są kluczowe dla ochrony i naprawy. Soczewki były zawsze opisywane jako tkanka bez unaczynienia, a więc pozbawiona ich źródła. Ciało rzęskowe jest [zaś] dobrze unaczynione, dlatego corpus ciliare wydawało się najbardziej oczywistym miejscem do zbadania [pod tym kątem].
      W ramach najnowszych badań na myszach Amerykanie wykazali, że po urazie rogówki komórki odpornościowe migrują z ciała rzęskowego wzdłuż włókien więzadełek rzęskowych, czyli pasm więzadłowych rozpiętych w tylnej komorze oka (utrzymują one soczewkę w jej położeniu). By to ustalić, akademicy posłużyli się fluorescencyjnymi znacznikami i mikroskopią. Wszystko wskazuje więc na to, że po urazie rogówki układ odpornościowy wdraża reakcję, która ma ochronić soczewkę.
      Podstawową część ciała rzęskowego tworzy mięsień rzęskowy, który kurcząc się lub rozkurczając, wywołuje, odpowiednio, spadek napięcia lub napięcie więzadełek, co przenosi się na soczewkę. To podstawowa funkcja ciała rzęskowego, ale jak podkreślają Amerykanie, proteom więzadełek obejmuje liczne białka macierzy pozakomórkowej i białka sygnalizacyjne, które mogą stwarzać środowisko sprzyjające migracji komórek. Jednym z nich jest glikoproteina towarzysząca mikrofibrylom (ang. microfibril‐associated protein‐1, MAGP-1).
      To pierwsza prezentacja obserwacji soczewki, przeprowadzanej przez komórki odpornościowe w odpowiedzi na uraz występujący w jakiejś części gałki ocznej.
      Autorzy publikacji z The FASEB Journal wykazali, że niektóre komórki odpornościowe pokonują torebkę soczewki. Wg akademików, może to wskazywać na rolę komórek immunologicznych w powstawaniu zaćmy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Studenci medycyny od dekad uczą się, że oczy komunikują się z mózgiem za pomocą jednego typu sygnałów, pobudzających. Jednak naukowcy z Northwestern University odkryli właśnie, że część neuronów siatkówki wysyła też sygnały hamujące. Naukowcy zauważyli również, że ten sam zestaw neuronów jest zaangażowany w takie działania jak synchronizacja rytmu dobowego z cyklem dnia oraz ze zwężaniem źrenicy w reakcji na jasne światło. Postanowili się więc przyjrzeć temu bliżej.
      Okazało się, że wysyłane z oka sygnały hamujące zapobiegają zresetowaniu się rytmu dobowego w reakcji na przytłumione światło i zapobiegają zwężaniu się źrenic, gdy jest mało światła. Oba te zjawiska zapewniają nam odpowiednie widzenie i funkcjonowanie za dnia. Sądzimy, że badania te mogą pomóc nam w zrozumieniu, dlaczego nasze oczy są tak wrażliwe na światło, ale podświadome reakcje naszego organizmu są stosunkowo niewrażliwe, mówi główna autorka badań, Tiffany Schmidt.
      W ramach badań Schmidt i jej zespół zablokowali u myszy neurony wysyłające sygnały hamujące. Wówczas za pomocą przytłumionego światła łatwiej było zmienić rytm dobowy myszy. To wskazuje, że sygnały z oczu w sposób aktywny powstrzymują nasz organizm przed zmianą rytmu dobowego w reakcji na przytłumione światło. To niespodziewane zjawisko. Ma to jednak sens, gdyż nie chcielibyśmy, by nasze organizmy zmieniały rytm dobowy w reakcji na zwykłe zmiany oświetlenia. Zmiana rytmu dobowego jest pożądana tylko wtedy, gdy rzeczywiście dochodzi do dużych zmian ilości dostępnego światła, stwierdziła Schmidt.
      Naukowcy zauważyli też, że po zablokowaniu sygnałów hamujących z oczu, źrenice myszy były znacznie bardziej wrażliwe na światło. Sądzimy, że mechanizm ten zapobiega kurczeniu się źrenic w słabym oświetleniu. Do rozszerzonej źrenicy wpada więcej światła, więc lepiej widzimy w takich warunkach. To częściowo wyjaśnia, dlaczego nasze źrenice zwężają się dopiero gdy jasne światło stanie się jeszcze jaśniejsze.
      Ze szczegółami badań można zapoznać się na łamach Science.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Datowanie radiowęglowe to niezwykle ważne narzędzie w archeologii. Jednak najnowsze badania pokazują, że ogólnie zaakceptowane standardy datowania radiowęglowego mogą dawać niedokładne dane, co stawia pod znakiem zapytania naszą wiedzę historyczną.
      Archeolog Sturt Manning i jego zespół ujawnili, że niedokładności w cyklu radiowęglowym wpływają na uznane standardy dotyczące badań historycznych i archeologicznych w południowym Lewancie, który obejmuje tak ważne historycznie miejsca jak Izrael, Jordanię i Egipt. Niedokładności, sięgające 20 lat w kalibracji urządzeń, mogą być powiązane z lokalnymi warunkami klimatycznymi.
      Profesor Manning, który jest dyrektorem Laboratorium Pierścieni Drzew na Cornell University, jest głównym autorem artykułu Fluctuating Radiocarbon Offsets Observed in the Southern Levant and Implications for Archaeological Chronology Debates opublikowanego w PNAS.
      Datowanie radiowęglowe materiału pochodzącego sprzed czasów współczesnych opiera się na standardowych krzywych kalibracji osobnych dla półkuli północnej i południowej. Krzywe takie opierają się na założeniu, że w dowolnym momencie poziom węgla C14 jest podobny i stabilny w każdym miejscu obu półkul.
      Postanowiliśmy przetestować to założenie. Z pomiarów atmosferycznych z ostatnich 50 lat wiemy, że poziomy radiowęgla wahają się w ciągu roku. Wiemy, że w różnym czasie w różnych miejscach półkuli północnej rosną różne rośliny. Zaczęliśmy się więc zastanawiać, czy poziomy węgla C14 wykorzystywane w datowaniu radiowęglowym materiału organicznego również mogą się wahać w zależności od miejsca i czy ma to wpływ na datowanie w archeologii, stwierdził uczony.
      Naukowcy wykonali więc serie pomiarów poziomu węgla C14 w pierścieniach drzew z południowej Jordanii, które dokładnie były datowane przez cały okres lat 1610-1940. Okazało się, że średnie odchylenie w datowaniu przy wykorzystaniu standardowej krzywej kalibracji dla półkuli północnej wynosiło 19 lat. Naukowcy zajmujący się archeologią biblijną i archeologią wczesnej epoki żelaza na terenie Jordanii i Izraela dokonują złożonych analiz z użyciem datowania radiowęglowego. Potrzebują do tego bardzo precyzyjnych pomiarów. Później na tej podstawie tworzymy chronologię naszych dziejów. Jednak nasza praca pokazuje, że podstawy, na których się opierają, są fałszywe. Wykorzystują krzywą kalibracyjną, która nie sprawdza się dla tego regionu.
      Od kilkudziesięciu lat specjaliści sprzeczają się o chronologie różnych wydarzeń, które dzielą od siebie zaledwie dekady. Przyjęcie każdej z proponowanych chronologii ma poważne implikacje dla naszej wiedzy historycznej. A teraz wszystkie te spory mogą być bezprzedmiotowe, gdyż opierają się nie niewłaściwym datowaniu, stwierdza Manning.
      Jego zdaniem wspomniane badania powinny sprowokować do poważnych przemyśleń i rewizji wczesnego okresu biblijnego południowego Lewantu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Miąższ czerwonych pomarańczy staje się karmazynowo-krwisty dzięki obecności antocyjanów. Aby barwniki zrobiły swoje, podczas dojrzewania musi jednak wystąpić chłodny okres. Idealna kombinacja chłodnych słonecznych dni oraz ciepłych nocy występuje wokół Etny. Naukowcy z Wielkiej Brytanii odnaleźli gen odpowiadający za "krwistość" owoców. Ruby, bo tak go nazwano, został wprowadzony do nasion popularniejszej odmiany Walencja, dzięki czemu smaczne owoce będzie można uzyskać w różnych rejonach świata. I to mniejszym niż dotychczas kosztem.
      Prof. Cathie Martin z Centrum Johna Innesa przy Norwich Research Park podkreśla, że antocyjany sprzyjają zdrowiu układu sercowo-naczyniowego, pomagają też w kontrolowaniu cukrzycy i ograniczeniu otyłości. Są bowiem silnymi przeciwutleniaczami i działają przeciwzapalnie. Co ważne, indukują ekspresję genu adiponektyny - cytokiny wytwarzanej w tkance tłuszczowej, która działa przeciwmiażdżycowo i zwiększa insulinowrażliwość.
      Wcześniejsze badania dotyczące soku z czerwonych pomarańczy wykazały np., że zmniejsza on stres oksydacyjny u diabetyków. Studium z 2010 r. zademonstrowało, że u myszy ogranicza on rozwój adipocytów; w porównaniu do wody czy zwykłego (jasnego) soku pomarańczowego zapewnia większą oporność na rozwój otyłości.
      Czerwone pomarańcze są, oczywiście, uprawiane poza Sycylią, np. w Japonii, RPA czy Iranie, ale w niektórych latach marnują się całe zbiory, bo w okresie dojrzewania nie ma odpowiednich warunków. Na Florydzie lub w Brazylii zawartość antocyjanów jest niewielka i zmienna.
      Brytyjczycy wyizolowali gen Ruby z miąższu czerwonych i jasnych pomarańczy. Odkryli, że jest on kontrolowany przez ruchome elementy genetyczne, które są z kolei aktywowane przez stres w postaci chłodu. Zespół dotarł do wszystkich odmian czerwonych pomarańczy, analizując, czy któreś wytwarzają antocyjany bez chłodu. Większość kultywarów pochodzi bezpośrednio lub pośrednio z Sycylii, lecz jedna stara odmiana (Jingxian) z Chin. Choć w jej przypadku produkcja barwników zależy od innego ruchomego elementu i tak musi go aktywować zimno.
      Po zakończeniu etapu manipulacji genetycznych hodowcy mają nadzieję doczekać się swoich owoców jeszcze przed końcem roku. Miejmy nadzieję, że w niedalekiej przyszłości owoce z krwistym miąższem będą rosnąć w "pomarańczowych zagłębiach" świata Florydzie i Brazylii. Staną się wtedy bardziej dostępne, a z ich właściwości prozdrowotnych skorzysta więcej osób.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...