Sign in to follow this
Followers
0
-
Similar Content
-
By KopalniaWiedzy.pl
Astrofizyk Stephen Kane z Uniwersytetu Kalifornijskiego w Riverside przeprowadził symulacje komputerowe, w których uzupełnił dwie rzucające się w oczy luki w Układzie Słonecznym. Pierwsza z nich to brak super-Ziemi, druga zaś to jej lokalizacja. Z symulacji wynika, że ich uzupełnienie zakończyło by historię życia na Ziemi.
Największą planetą skalistą Układu Słonecznego jest Ziemia. Najmniejszym gazowym olbrzymem jest zaś Neptun o 4-krotnie większej średnicy i 17-krotnie większej masie. Nie ma żadnej planety o pośrednich cechach. W innych układach znajduje się wiele planet o wielkości i masie pomiędzy Ziemią a Neptunem. Nazywamy je super-Ziemiami, wyjaśnia Kane. Druga z luk to odległość od Słońca. Merkury położony jest o 0,4 jednostki astronomicznej (j.a.) od naszej gwiazdy, Wenus dzieli od niej 0,7 j.a., Ziemię – 1 j.a., a Marsa – 1,5 j.a. Kolejna planeta, Jowisz, znajduje się już 5,2 j.a. od Słońca. Kane w swoich symulacjach postanowił wypełnić tę lukę. Symulował więc istnienie tam planety o różnej masie i sprawdzał, jak jej obecność wpływała na inne planety.
Wyniki symulacji – w ramach których Kane badał skutki obecności planety o masie 1-10 mas Ziemi na orbicie odległej od Słońca o 2-4 j.a. – opublikowane na łamach Planetary Science Journal, były katastrofalne dla Układu Słonecznego. Taka fikcyjna planeta wpłynęłaby na orbitę Jowisza, co zdestabilizowałby cały układ Słoneczny. Jowisz, największa z planet, ma masę 318-krotnie większa od Ziemi. Jego grawitacja wywiera więc duży wpływ na otoczenie. Jeśli super-Ziemia lub inny masywny obiekt zaburzyłby orbitę Jowisza, doszłoby do znacznych zmian w całym naszym otoczeniu. W zależności od masy i dokładnej lokalizacji super-Ziemi jej obecność – poprzez wpływ na Jowisza – mogłaby doprowadzić do wyrzucenia z Układu Słonecznego Merkurego, Wenus i Ziemi. Podobny los mógłby spotkać Urana i Neptuna. Jeśli zaś super-Ziemia miałaby znacznie mniejszą masę niż ta prowadząca do katastrofy i znajdowałaby się dokładnie po środku pomiędzy Marsem a Jowiszem, układ taki mógłby być stabilny. Jednak każde odchylenie w jedną lub drugą stronę skończyłoby się katastrofą.
Badania Kane'a to nie tylko ciekawostka. Pokazują, jak delikatna jest równowaga w Układzie Słonecznym. Ma też znaczenie dla poszukiwania układów planetarnych zdolnych do podtrzymania życia. Mimo że podobne do Jowisza, odległe od swoich gwiazd, gazowe olbrzymy znajdowane są w zaledwie 10% układów, to ich obecność może decydować o stabilności orbit planet skalistych.
« powrót do artykułu -
By KopalniaWiedzy.pl
Planeta 9, zwana też Planetą X, to hipotetyczna planeta Układu Słonecznego. Nie została jeszcze odkryta, nie wiadomo, czy w ogóle istnieje. Tymczasem Man Ho Chan, astronom z Uniwersytetu w Hongkongu, opublikował na łamach arXiv artykuł pod zaskakującym tytułem „A co jeśli planeta 9 ma satelity?”. Tekst został zaakceptowany do publikacji w Astronomical Journal.
Historia planety rozpoczęła się, gdy Chad Trujillo, były doktorant profesora Mike'a Browna z Caltechu, i Scott Sheppard opublikowali pracę, w której stwierdzili, że nietypowe orbity o podobnych cechach kilkunastu odległych obiektów z Pasa Kuipera, można wyjaśnić istnieniem nieznanej planety. Brown stwierdził, że to mało prawdopodobne, ale nawiązał współpracę z profesorem Konstantinem Batyginem, by to sprawdzić. Na początku 2016 roku ukazała się praca ich autorstwa, w której stwierdzali, że prawdopodobieństwo, iż wspomniane nietypowe orbity są dziełem przypadku jest tak małe, iż wszystko wskazuje na istnienie nieznanej planety w Układzie Słonecznym, której oddziaływanie doprowadziło to takiego ukształtowania orbit. Stwierdzili wówczas, że planeta taka miałaby masę 10-krotnie większa od masy Ziemi, znajdowałaby się średnio 20-krotnie dalej od Słońca niż Neptun, a czas jej obiegu wynosiłby od 10 do 20 tysięcy lat. W ciągu ostatnich lat kolejne zespoły naukowe wysuwały hipotezy mówiące zarówno, że obca planeta została „ukradziona” przez Słońce innej gwieździe, jak i że w Układzie Słonecznym krąży pierwotna czarna dziura. Dotychczas jednak żadna z hipotez nie została udowodniona.
Skoro zaś nie wiemy, czy planeta istnieje, tym bardziej dziwne wydaje się rozważanie na temat jej satelitów. Jednak ma to sens. Dzięki potencjalnym księżycom wykrycie Planety 9 będzie bowiem łatwiejsze. Chan argumentuje, że jeśli ma ona księżyce, to będą one posiadały zmienną sygnaturę cieplną, wywołaną przez siły pływowe planety. Ta sygnatura cieplna powinna być 2,5-krotnie silniejsza niż sygnatura cieplna samej planety oraz znacznie większa niż sygnatura jakiegokolwiek obiektu z Pasa Kupiera. Chan twierdzi, że do jej wykrycia powinien być zdolny Atacama Large Millimeter/submillimeter Array Observatory, który niedawno przeszedł rozbudowę. Uczony z Hongkongu zauważa, że jeśli Batygin i Brown nie mylą się co do szacunków masy Planety 9, to może mieć ona nawet 20 satelitów, co zwiększa szanse na wykrycie ich sygnatur cieplnych. Poza orbitą Neptuna nie istnieje żaden mechanizm, który mógłby zwiększać temperatury w zakresie opisanym przez Chana, wykrycie takiej sygnatury byłoby mocną wskazówką istnienia Planety 9.
« powrót do artykułu -
By KopalniaWiedzy.pl
Ziemia wraz z Układem Słonecznym znajduje się w szerokiej na setki lat świetlnych pustce otoczonej tysiącami młodych gwiazd. Pustka ta, w której średnia gęstość materii międzygwiezdnej jest 10-krotnie mniejsza niż w Drodze Mlecznej, zwana jest Bąblem Lokalnym. Naukowcy z Center for Astrophysics | Harvard & Smithsonian (CfA) i Space Telescope Science Institute (STScI) postawili sobie za zadanie odtworzenie historii naszego galaktycznego sąsiedztwa. Wykazali, jak szereg wydarzeń, które rozpoczęły się przed 14 milionami lat, doprowadził do stworzenia bąbla, odpowiedzialnego za powstanie niemal wszystkich pobliskich gwiazd.
Astronom i ekspertka od wizualizacji danych, Catherine Zucker, która brała udział w badaniach mówi, że to naprawdę historia narodzin, po raz pierwszy jesteśmy w stanie wyjaśnić, jak rozpoczęło się formowanie wszystkich pobliskich gwiazd.
Głównym elementem pracy naukowców jest animacja 3D, która pokazuje, że wszystkie młode gwiazdy i regiony gwiazdotwórcze znajdujące się w odległości 500 lat świetlnych od Ziemi, umiejscowione sa na powierzchni Bąbla Lokalnego. O jego istnieniu wiadomo od dziesięcioleci, ale dopiero teraz zaczynamy rozumieć początki Bąbla i jego wpływ na otaczający go gaz.
Naukowcy wykazali teraz, że przed 14 milionami lat rozpoczęła się seria eksplozji supernowych, które wypchnęły gaz międzygwiezdny na zewnątrz, tworząc bąbel o powierzchni gotowej do formowania się gwiazd. Dzisiaj wiemy, że na powierzchni Bąbla znajduje się siedem regionów gwiazdotwórczych – chmur molekularnych – gęstych regionów w przestrzeni kosmicznej, w których formują się gwiazdy. Z naszych obliczeń wynika, że w przeciągu milionów lat doszło do 15 eksplozji supernowych, które uformowały Bąbel Lokalny, mówi Zucker. Uczeni zauważyli, że bąbel powoli rozszerza się z prędkością około 6,5 km/s.
Tempo rozszerzania się bąbla oraz obecne i przeszłe trajektorie gwiazd tworzących się na jego powierzchni zostały określone dzięki danym zebranym przez kosmiczne obserwatorium Gaia Europejskiej Agencji Kosmicznej.
Gdy wybuchła pierwsza supernowa, która przyczyniła się do powstania Bąbla Lokalnego, Słońce znajdowało się daleko od tego wydarzenia. Jednak około 5 milionów lat temu wiodąca przez galaktykę trasa Słońca zaprowadziła je w kierunku Bąbla i teraz Słońce, zupełnym przypadkiem, znajduje się niemal dokładnie w jego centrum, dodaje profesor João Alves z Uniwersytetu Wiedeńskiego.
Niemal 50 lat temu pojawiła się teoria mówiąca, że bąble powszechnie występują w Drodze Mlecznej. Teraz mamy na to dowód. Bo jaka jest szansa, że znajdziemy się dokładnie w środku takiej struktury, mówi Goodman. Gdyby bąble były rzadkością, prawdopodobieństwo, że Słońce trafi do samego centrum jednego z nich, byłoby znikome. Droga Mleczna przypomina więc pełen dziur ser szwajcarski, w którym dziury są tworzone przez wybuchy supernowych, a na powierzchni bąbli tworzonych przez umierające gwiazdy, rodzą się kolejne gwiazdy.
Teraz uczeni planują zmapować więcej bąbli i uzyskać trójwymiarowy obraz ich lokalizacji, kształtów i rozmiarów. Stworzenie takiego spisu bąbli oraz łączących je oddziaływań pozwoli na określenie roli umierających gwiazd w powstawaniu kolejnych pokoleń gwiazd oraz poszerzy naszą wiedzę o strukturze i ewolucji galaktyk podobnych do Drogi Mlecznej.
Artykuł opisujący badania opublikowano na łamach The Astrophysical Journal Letters, natomiast wszystkie interaktywne dane oraz materiały wideo zostały bezpłatnie udostępnione na specjalnie stworzonej witrynie.
« powrót do artykułu -
By KopalniaWiedzy.pl
Naukowcy poszukujący życia poza Układem Słonecznym zwracają uwagę na planety o podobnej masie, rozmiarach, temperaturze i składzie atmosfery, co Ziemia. Astronomowie z University of Cambridge twierdzą jednak, że istnieje znacznie więcej możliwości, niż tylko znalezienie „drugiej Ziemi”. Na łamach Astrophysical Journal opublikowali artykuł, w którym informują o zidentyfikowaniu nowej klasy planet, na których może istnieć życie. A jako że planety tą są bardziej rozpowszechnione i łatwiejsze do obserwowania niż kopie Ziemi, nie można wykluczyć, że ślady życia poza Układem Słonecznym znajdziemy w ciągu kilku lat.
Ta nowa klasa została przez nich nazwana „planetami hyceańskimi”, od złożenia wyrazów „hydrogen” (wodór) i „ocean”. To światy pokryte oceanem o atmosferze bogatej w wodór. Planety hyceańskie otwierają zupełnie nowe możliwości w dziedzinie poszukiwania życia, mówi główny autor badań, doktor Nikku Madhusudhan z Insytutu Astroomii.
Wiele z kandydatów na „planety hyceańskie” to obiekty większe i cieplejsze od Ziemi. Ale z ich charakterystyk wynika, że są pokryte olbrzymimi oceanami zdolnymi do podtrzymania życia w takiej formie, jaką znajdujemy z najbardziej ekstremalnych ziemskich środowiskach wodnych. Co więcej, dla planet takich istnieje znacznie większa ekosfera.
Ekosfera, przypomnijmy, to taki zakres odległości planety od jej gwiazdy macierzystej, w którym woda na planecie może istnieć w stanie ciekłym. Jak się okazuje, w przypadku „planet hyceańskich” ekosfera jest szersza niż dla planet wielkości Ziemi.
W ciągu ostatnich niemal 30 lat odkryliśmy tysiące planet poza Układem Słonecznym. Większość z nich to planety większe od Ziemi, a mniejsze od Neptuna, zwane super-Ziemiami. To zwykle skaliste lub lodowe olbrzymy z atmosferami bogatymi w wodór. Wcześniejsze badania takich planet pokazywały, że jest na nich zbyt gorąco, by mogło tam istnieć życie.
Niedawno zespół Madhusudhana prowadził badania super-Ziemi K2-18. Naukowcy odkryli, że w pewnych okolicznościach na planetach takich mogłoby istnieć życie. Postanowili więc przeprowadzić szerzej zakrojone badania, by określić, jakie warunki powinna spełniać planeta i jej gwiazda, by tego typu okoliczności zaszły, które ze znanych egzoplanet je spełniają oraz czy możliwe byłoby zaobserwowanie z Ziemi ich biosygnatur, czyli śladów tego życia.
Uczeni stwierdzili, że „planety hyceańskie” mogą być do 2,6 razy większe od Ziemi, temperatura ich atmosfery może dochodzić do 200 stopni Celsjusza, ale warunki panujące w oceanach mogą być podobne do warunków, w jakich w ziemskich oceanach istnieją mikroorganizmy. Do klasy tej należą też „ciemne planety hyceańskie”, których obrót jest zsynchronizowany z ich obiegiem wokół gwiazdy, zatem w stronę gwiazdy zwrócona jest zawsze jedna strona planety. Tego typu ciała niebieskie mogłyby utrzymać życie tylko na stronie nocnej.
Planety większe od Ziemi, ale nie bardziej niż 2,6-krotnie, dominują wśród odkrytych planet. Można przypuszczać, że „planety hyceańskie” występują wśród nich dość powszechnie. Dotychczas jednak nie cieszyły się zbyt dużym zainteresowaniem, gdyż skupiano się przede wszystkim na badaniu planet najbardziej podobnych do Ziemi.
Jednak sam rozmiar to nie wszystko. Aby potwierdzić, że mamy do czynienia z „planetą hyceańską” musimy też poznać jej masę, temperaturę oraz skład atmosfery.
« powrót do artykułu -
By KopalniaWiedzy.pl
Przed dwoma laty astronomowie zauważyli niezwykły obiekt, międzygwiezdną kometę. 2I/Borisov to jedyna taka kometa i zaledwie drugi – po 1I/Oumuamua – znany nam przybysz spoza Układu Słonecznego. Jednak wizyty tego typu mogą być znacznie częstsze niż nam się wydaje. Amir Siraj i profesor Avi Loeb z Center for Astrophysics (CfA) Harvard & Smithsonian zaprezentowali właśnie badania, z których wynika, że w Obłoku Oorta znajduje się więcej obiektów pochodzących spoza Układu Słonecznego niż z Układu Słonecznego.
Zanim odkryliśmy pierwszą międzygwiezdną kometę, nie mieliśmy pojęcia, jak dużo tego typu obiektów znajduje się w Układzie Słonecznym. Jednak teorie dotyczące formowania się planet przewidują, że powinno być tutaj więcej obiektów rodzimych niż przybyszów. Jednak z naszych obliczeń wynika, że gości może być znacznie więcej, mówi Siraj.
Uczony przyznaje, że obliczenia, opierające się na badaniach 2I/Borisov, obarczone są dość sporym marginesem błędu, ale nawet jeśli weźmiemy to pod uwagę i tak Obłok Oorta powinien być w większości zbudowany z obiektów międzygwiezdnych.
Powiedzmy, że przez jeden dzień obserwuję kilometrowy odcinek torów kolejowych. I zauważyłem, że w tym czasie przekroczył go jeden samochód. Mogę więc stwierdzić, że średnia liczba samochodów przejeżdżających przez tory kolejowe wynosi 1 pojazd na 1 kilometr na 1 dzień. Jeśli jednak mam podstawy, by przypuszczać, że moje obserwacje nie były pełne – gdy na przykład zauważę dodatkowy przejazd kolejowy, na który nie zwróciłem wcześniej uwagi – mogę pójść dalej i wykorzystać metody statystyczne do oceny rzeczywistej liczby samochodów, które przejechały przez tory na obserwowanym przeze mnie odcinku, wyjaśnia uczony.
Obłok Oorta to hipotetyczna olbrzymia sfera otaczająca Układ Słoneczny. Jego wewnętrzna krawędź ma znajdować się w odległości od 2000 do 5000 jednostek astronomicznych [1 j.a. to średnia odległość Ziemi od Słońca], a krawędź zewnętrzna może być oddalona od naszej gwiazdy o 10 000 lub nawet 100 000 j.a. Obłok składa się z olbrzymiej liczby obiektów. Uważa się, że komety długookresowe pochodzą właśnie z Obłoku Oorta. Samego jednak Obłoku, ze względu na jego olbrzymie oddalenie oraz fakt, że znajdujące się tam obiekty nie świecą światłem własnym, nie udało się zaobserwować. Dlatego też tak trudno badać ten obszar.
Obliczenia Siraja i Loeba, opublikowane na łamach Monthly Notices of the Royal Astronomical Society, mogą mieć znaczenie również dla obiektów znajdujących się bliżej niż Obłok Oorta. Wyliczenia te sugerują bowiem, że wiele obiektów znajdujących się pomiędzy Słońcem a Saturnem pochodzi z przestrzeni międzygwiezdnej. A to by oznaczało, że w naszym niedalekim sąsiedztwie roi się od przybyszów z innych układów planetarnych, zauważa astrofizyk Matthew Holman.
Rodzi się więc pytanie, czy znane nam asteroidy, znajdujące się stosunkowo niedaleko Ziemi nie przybyły spoza Układu Słonecznego. Pytanie jest o tyle zasadne, że o wielu asteroidach nie mamy zbyt wielu danych. Są one wykrywane, a później specjaliści ich już nie śledzą. Sądzimy, że to asteroidy, ale ich nie obserwujemy, nie mamy więc szczegółowych danych, mówi Holman.
Dopiero przyszłe badania za pomocą technologii najnowszej generacji pozwolą nam stwierdzić, czy Siraj i Loeb mają rację. Jeszcze w bieżącym roku na szczycie Cerro Pachón w Chile zostanie uruchomione Vera C. Rubin Observatory (VRO). To supernowoczesne obserwatorium wyposażone będzie m.in. w najpotężniejszy aparat cyfrowy w dziejach – ważące trzy tonu urządzenie o rozdzielczości 3,2 gigapiksela. VRO będzie badało ciemną materię, asteroidy bliskie Ziemi, poszukiwało obiektów międzygwiezdnych i mapowało Drogę Mleczną.
Kolejnym projektem badawczym, z którym specjaliści wiążą olbrzymie nadzieje jest Transneptunian Automated Occultation Survey (TAOS II). Jego celem będzie poszukiwanie niewielkich – poniżej 1 km średnicy – obiektów znajdujących się za Neptunem. TAOS II ma ruszyć w przyszłym roku.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.