Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Koniec drugiego okrążenia wokół Słońca

Recommended Posts

Parker Solar Probe, sonda która leci, by dotknąć Słońca, zakończyła drugie okrążenie wokół naszej gwiazdy. Przed 4 dniami PSP przeleciała w odległości 24 milionów kilometrów od powierzchni gwiazdy i poruszała się w tym czasie z prędkością 343 000 km/h. Już w tej chwili sonda jest najbliższym Słońca i najszybciej poruszającym się obiektem wykonanym ludzką ręką. A to nie koniec jej osiągnięć. W 2024 roku Parker Solar Probe wleci w atmosferę Słońca i znajdzie się w odległości zaledwie 6 milionów kilometrów od jego powierzchni. Będzie się wówczas poruszała z prędkością 700 000 km/h.

Nad misją czuwa zespół z Johns Hopkins Applied Physics Laboratory. Podczas peryhelium sond była na bieżąco monitorowana przez 4 godziny. Łączność z niż zapewnia Deep Space Network. Urządzenie wysłało informację, że wszystko jest w porządku, a badania naukowe prowadzone są zgodnie z planem.

Sonda działa jak należy. Wspaniale było móc ją śledzić podczas całego peryhelium. W ciągu najbliższych tygodni otrzymamy dane zebrane podczas tego zbliżenia. Naukowcy będą je analizowali, by poznać kolejne tajemnica Słońca i jego korony, mówi Nickalaus Pinkine odpowiedzialny za nadzorowanie misji.

PSP rozpoczęła spotkanie ze Słońcem 30 marca i potrwa ono do 10 kwietnia. Termin „spotkanie ze Słońcem” określa sytuację, gdy sonda znajduje się w odległości mniejszej niż 0,25 jednostek astronomicznych od naszej gwiazdy.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Ludzkość od kilkuset lat śledzi plamy na Słońcu i wie, że ich liczba zmienia się w 11-letnich cyklach. Dotychczas jednak brak dobrego wyjaśnienia tego fenomenu. Naukowcy z University of Washington opublikowali na łamach Physics of Plasmas artykuł, w którym proponują model ruchu plazmy, który ma wyjaśniać zarówno 11-letni cykl słoneczny ja i inne tajemnice naszej gwiazdy.
      Nasz model znacząco różni się od standardowego obrazu Słońca. Sądzę, że jesteśmy pierwszymi którzy są w stanie wyjaśnić naturę oraz źródło słonecznych zjawisk magnetycznych, czyli jak działa Słońce, mówi profesor Thomas Jarboe, główny autor artykułu.
      Model opiera się na doświadczeniach nabytych w czasie prac nad energią fuzyjną. Wynika z niego, że kluczem do zrozumienia Słońca jest cienka warstwa znajdująca się pod jego powierzchnią. To ona decyduje o plamach, przebiegunowaniu magnetycznym czy przepływie materii. Model ten porównano z danymi obserwacyjnymi i okazało się, że dobrze je on przewiduje. Dane obserwacyjne są kluczem do potwierdzenia słuszności naszego modelu funkcjonowania Słońca, mówi Jarboe.
      W tym nowym modelu mamy do czynienia z cienką warstwo przepływu plazmy i pola magnetycznego, innymi słowy z cienką warstwą swobodnie poruszających się elektronów, które z różną prędkością przemieszczają się w różnych częściach gwiazdy. Różnice w tempie przepływu wywołują zmiany pola magnetycznego, podobne do tych, które pojawiają się w niektórych eksperymentalnych reaktorach fuzyjnych.
      Co 11 lat wa warstwa staje się na tyle duża, że traci stabilność i Słońce się jej pozbywa, mówi Jarboe. Podczas tego procesu odsłonięta zostaje niżej położona warstwa plazmy, która porusza się w przeciwnym kierunku i ma odwrócone pole magnetyczne. Gdy obie półkule Słońca poruszają się z tą samą prędkością, pojawia się więcej plam. Gdy prędkości są różne, plam jest mniej. To właśnie różnica w prędkościach wywołała Minimum Maundera, stwierdza uczony.
      Gdy dwie półkule obracają się z różną prędkością, wówczas w pobliżu równika zaczątki plam nie pasują do siebie i nie dochodzi do ich powstawania, mówi Jarboe. Dotychczas naukowcy sądzili, że plamy słoneczne powstają na głębokości 30% średnicy Słońca, przypomina uczony. Tymczasem z nowego modelu wynika, że są one „superziarnami” powstającymi na głębokości 150–450 kilometrów. Plama słoneczna to coś zadziwiającego.Pojawia się nagle i znikąd.
      Podczas swoich badań nad reaktorami Jarboe i jego koledzy skupiali się na sferomaku, typie reaktora, który generuje plazmę w kuli. Tam plazma samodzielnie się organizuje w różnorodne wzorce. Gdy naukowcy porównali zachodzące w niej zjawiska z tym, co wiadomo o Słońcu, zauważyli podobieństwa.
      Jarboe twierdzi, że nowy model wyjaśnia przepływ materii wewnątrz Słońca, zmiany pola magnetycznego prowadzące do powstawania plam oraz całą strukturę magnetyczną naszej gwiazdy. Mam nadzieję, że naukowcy spojrzą na swoje dane z nowej perspektywy, a ci, którzy całe życie poświęcili zbieraniu danych otrzymają do ręki nowe narzędzie, pozwalające lepiej to wszystko zrozumieć, mówi uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Poniższa wiadomość to nasz żart primaaprilisowy

      Nie rozumiemy tych danych. Jedyna możliwa interpretacja jest niemożliwa, mówi Chris LaMotta z Jet Propulsion Laboratory. LaMotta jest głównym nawigatorem programu Voyager 2 i od kilku tygodni pewien problem spędza mu sen z powiek.
      Na początku lutego do JPL zaczęły spływać dane świadczące o tym, że Voyager 2... zmienia kurs.
      Wszystkie amerykańskie sondy wysłane w dalsze rejony kosmosu korzystają z anten Deep Space Network (DSN). Anteny wysyłają sygnał do sondy, ta je odbiera i odpowiada. Docierająca odpowiedź jest nieco przesunięta w stosunku do częstotliwości sygnału wysłanego. Obliczenia różnicy pozwalają z dużą dokładnością określić odległość i prędkość sondy względem anten. Dzięki niezwykle dokładnym zegarom atomowym prędkość sond można mierzyć z dokładnością do 0,005 milimetra na sekundę, a ich odległość z dokładnością do 3 metrów. Natomiast kwestie trajektorii lotu rozwiązuje się za pomocą inercyjnego systemu koordynacyjnego, który wykorzystuje siatkę nałożoną na Układ Słoneczny, która jest ustawiona względem gwiazd w tle. Centrum siatki stanowi centrum masy Układu Słonecznego. Wszystkie te pomiary razem pozwalają na bardzo precyzyjne określenie położenia sondy względem anten, zatem, znając dokładne położenie anten DSN można określić dokładne położenie Voyagera. Tutaj należy uwzględnić też efemerydę Ziemi, czyli jej położenie względem centrum masy Układu Słonecznego. To jest znane z dokładnością do 0,5 kilometra.
      Trasę obu Voyagerów obliczono już wiele lat temu. Co jakiś czas wprowadzamy korekty do tych obliczeń. Poza tym raz na kilka tygodni na wszelki wypadek sprawdzamy, czy trasa pokrywa się z wyliczeniami, mów LaMotta.
      Niewielkie odchylenia kursu są czymś normalnym i spodziewanym. Gdy na początku lutego okazało się, że Voyager 2 zszedł z kursu bardziej, niż kiedykolwiek wcześniej, grupa LaMotty początkowo przypuszczała, że pomyliła się w obliczeniach. Koledzy z innych zespołów zaczęli żartować, że Obcy porwali Voyagera. Na stołówce nie dawali nam spokoju, wspomina jeden z ludzi LaMotty, Greg Papadopoulos.
      Kolejne wyliczenia pokazywały jednak, że Voyager leci inną trasą niż powinien. Powołany ad hoc zespół inżynierów sprawdził wszystkie urządzenia naziemne i okazało się, że działają prawidłowo. Sprawdzono nawet anteny DSN, mimo że inne korzystające z nich sondy nie wykazywały żadnych anomalii.
      Żaden z instrumentów Voyagera 2 nie zanotował niczego, co wskazywałoby na wpływ jakiegokolwiek znanego zjawiska fizycznego, które mogło zmienić kurs sondy. Eksperci z JPL poprosili o pomoc specjalistów z wielu amerykańskich instytucji naukowych oraz z Europejskiej Agencji Kosmicznej i Japońskiej Agencji Kosmicznej. Dotychczas nikt nie potrafi wyjaśnić, co dzieje się z Voyagerem. W najbliższy czwartek w JPL ma odbyć się spotkanie z udziałem wszystkich żyjących jeszcze inżynierów i naukowców, którzy brali udział w przygotowywaniu Voyagera i w pierwszych latach jego misji.
      Od czasu zauważenia problemów JPL codziennie sprawdza trasę Voyagera. Dane są coraz bardziej dziwne. To wygląda tak, jakby Voyager zawracał, mówi zaskoczony LaMotta.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jeszcze w bieżącym roku na Ziemię może spaść radziecki próbnik, który miał dolecieć na Wenus. Pojazd Kosmos 482 został wystrzelony 31 marca 1972 roku. Jednak coś poszło nie tak i spora część próbnika pozostała na orbicie naszej planety. Teraz eksperci ostrzegają, że wkrótce może ona spaść na Ziemię, być może nawet w tym roku.
      Kosmos 482 był bliźniaczym pojazdem sondy Wenera 8, która w lipcu 1972 roku jako drugi pojazd w historii wylądowała na powierzchni Wenus. Pracowała tam przez 50 minut i 11 sekund zanim zamilkła, zniszczona zapewne przez wysoką temperaturę panującą na powierzchni planety. Pierwszym była, również radziecka, Wenera 7, która z Wenus nadawała przez kilka minut.
      Tymczasem Kosmos 482 pozostała na orbicie Ziemi. Niektóre jej fragmenty dość szybko spadły na Ziemię, inne wciąż latają nad naszymi głowami. Problemem jest to, że część, która ma spaść na Błękitną Planetę waży 495 kilogramów i jest wyposażona w osłony termiczne. Bez problemu przetrwa wejście w atmosferę, mówi obserwator satelitów, Thomas Dorman. Byłoby zabawnie, gdybyśmy zobaczyli, jak spada i nagle rozwijają się spadochrony. Jednak jestem pewien, że baterie, które miały uruchomić ładunki wybuchowe odpalające spadochrony od dawna już nie mają energii, dodaje.
      Na widowiskowy upadek pozostałości Kosmos 482 czeka wiele osób na całym świecie. Chcą prowadzić obserwacje i robić zdjęcia. Spekulują, w jakim stanie jest ten akurat fragment sondy. Próbują też przewidzieć, kiedy dojdzie do upadku. Tutaj jednak wiele zależy od tego, jak fragment będzie się rozpadał, jak będzie nań oddziaływało Słońce. Prawdopodobnie jednak Kosmos 482 trafi na Ziemię pomiędzy końcem bieżącego, a połową przyszłego roku.
      Obecnie obserwowany fragment znajduje się na orbicie, której najdalszy punkt od Ziemi wynosi 2735 kilometrów, a najbliższy – zaledwie 200 km. Próba badania i zrozumienia Kosmos 482 jest jak obserwowanie wraku statku, który porusza się z prędkością około 11 000 kilometrów na godzinę, w ciągle zmieniających się warunkach oświetleniowych, z odległości setek kilometrów i to w sytuacji, gdy dobrze widać go tylko przez kilka sekund kilka razy w roku, stwierdza Dorman.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badania podjęte przez naukowców z Northumbria University wskazują na istnienie nieznanej dotychczas stałej podstawowej Słońca. W artykule, który został opublikowany w Nature Astronomy, czytamy, że fale magnetyczne naszej gwiazdy zachowują się inaczej niż dotychczas sądzono.
      Po przeanalizowaniu danych z okresu 10 lat naukowcy doszli do wniosku, że fale magnetyczne w koronie Słońca reagują na dźwięk wydobywający się z wnętrza gwiazdy.
      Fale te, zwane falami Alfvena, odgrywają kluczową rolę w transporcie energii wokół Słońca i w Układzie Słonecznym. Dotychczas sądzono, że ich źródłem jest powierzchnia gwiazdy. Teraz okazuje się, że fale te są wzbudzone w wyższych partiach atmosfery Słońca przez fale dźwiękowe z jego wnętrza.
      Brytyjscy naukowcy odkryli, że fale dźwiękowe pozostawiają w falach magnetycznych unikatowy ślad. Cała korona słoneczna, reagując na wspomniane fale dźwiękowe, wibruje w określonych częstotliwościach.
      Nowo odkryte zjawisko występowało stale przez cały badany 10-letni okres, co wskazuje, że mamy do czynienia z fundamentalną stałą Słońca i prawdopodobnie innych gwiazd. Odkrycie to będzie miało olbrzymie znaczenie dla naszego rozumienia transportu energii w atmosferze Słońca.
      Odkrycie tak specyficznego śladu, który potencjalnie może być nową stałą Słońca, jest niezwykle ekscytujące. Wcześniej sądziliśmy, że fale magnetyczne są wzbudzane przez wodór na powierzchni gwiazdy, a teraz wiemy, że są wzbudzane przez fale dźwiękowe. Być może powstanie nowy sposób na badanie i klasyfikowanie gwiazd pod kątem tej unikatowej sygnatury. Skoro wiemy, że ona istnieje, możemy poszukać jej w innych gwiazdach, mówi główny autor badań, doktor Richard Morton.
      Korona Słońca jest ponad 100-krotnie cieplejsza niż jego powierzchnia, a odpowiada za to energia z fal Alfvena, która podgrzewa koronę do temperatury około miliona stopni. Fale Alfvena są też odpowiedzialne za podgrzewanie i przyspieszanie wiatru słonecznego.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Parker Solar Probe, wyjątkowa sonda, która ma „dotknąć” Słońca, rozpoczęła swoją drugą orbitę wokół naszej gwiazdy. Pierwszą orbitę zakończyła 19 stycznia. Znajdowała się wówczas w aphelium, czyli punkcie najbardziej odległym od Słońca. Za trzy miesiące, 4 kwietnia, PSP dotrze do perihelium, czyli punktu najbliższego Słońcu.
      Parker Solar Probe weszła w pełny tryb operacyjny, zwany Fazą E, wraz z początkiem bieżącego roku. Faza E oznacza, że wszystkie systemy są włączone i działają jak należy.
      Dotychczas z sondy na Ziemię trafiło ponad 17 gigabitów danych. Wszystkie informacje z pierwszej orbity zostaną pobrane do kwietnia. To była wspaniała orbita. Dowiedzieliśmy się wiele na temat pracy sondy i jej interakcji ze środowiskiem, w którym się znajduje. Z dumą mogę potwierdzić, że wszystkie przewidywania naszego zespołu okazały się trafione, mówi menedżer projektu Andy Driesman z Laboratorium Fizyki Stosowanej (APL) na Uniwersytecie Johnsa Hopkinsa.
      Zawsze mówiliśmy, że nie będziemy wiedzieli, czego się spodziewać, dopóki nie przeanalizujemy danych. Informacje, które dotychczas otrzymaliśmy ujawniły wiele rzeczy, o których nie mieliśmy pojęcia. Dają on nadzieję na nowe odkrycia. Parker Solar Probe zdradzi nam tajemnice Słońca, wyjaśnia główny naukowiec misji, Nour Raouafi z APL.
      W oczekiwaniu na kolejne zbliżenie do Słońca naukowcy oczyszczają nośniki PSP z dotychczas zgromadzonych danych. Sonda otrzymuje też zaktualizowane dane dotyczące jej pozycji oraz dane potrzebne do nawigacji. W kwietniu PSP znajdzie się w podobnej odległości od Słońca, w jakiej była podczas perihelium z listopada 2018 – 24 miliony kilometrów. To dwukrotnie mniej niż wcześniejszy rekord. W 1976 roku sonda Helios 2 znalazła się w odległości około 43 milionów kilometrów.

      « powrót do artykułu
×
×
  • Create New...