Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Konkurs uczniowski Fizyczne Ścieżki - finał XIV edycji

Recommended Posts

Fizyczne Ścieżki to konkurs uczniowski, który co roku, począwszy od 2005 r., organizowany jest wspólnie przez Narodowe Centrum Badań Jądrowych w Świerku i Instytut Fizyki Polskiej Akademii Nauk w Warszawie. Konkurs rozpoczyna się w maju, a kończy Seminarium Finałowym w marcu lub kwietniu. Jest on przeznaczony dla tych wszystkich, którzy znajdują w sobie pasję badawczą i poznawczą, którzy mają pełne pomysłów głowy, dla humanistów, którzy patrzą na świat szeroko otwartymi oczami.

Konkurs rozgrywa się w trzech kategoriach: pokaz zjawiska fizycznego, praca naukowa oraz esej.

Pokaz zjawiska fizycznego – nie trzeba znać wszystkich subtelności (w tym matematycznych) fizyki, aby móc przygotować pasjonujący pokaz jakiegoś zjawiska – ważny jest przede wszystkim dobry pomysł, który zaciekawi widzów;

Esej – skierowany do tych, którzy potrafią zauważyć, jak dalece fizyka kształtuje naszą cywilizację – w tym celu wystarczy dysponować tzw. lekkim piórem i nawet podstawową wiedzą fizyczną;

Prace naukowe – kategoria wymagająca, ale nie oznacza to, że jedynie osoby z umysłem Einsteina są w stanie podołać temu zadaniu: trzeba się tylko odważyć i opanować reguły rządzące pracą naukową.

Konkurs jest dwuetapowy:

Uczestnik przesyła swoją pracę lub jej opis pocztą elektroniczną na adres organizatora. Nadesłane prace oceniają pracownicy naukowi i na podstawie ich ocen Jury typuje finalistów. Są oni zapraszani na seminarium finałowe gdzie prezentują swoje propozycje przed Jury i publicznością oraz odpowiadają na pytania Jury związane z ich pracą. Podczas seminarium finałowego wyłonieni są laureaci konkursu, którzy otrzymują nagrody, a wśród nich możliwość uzyskania indeksów wydziałów fizyki największych uczelni w Polsce, oraz staże w jednostkach naukowych zarówno polskich jak i zagranicznych.

W tym roku odbywa się już XIV edycja konkursu. Po raz pierwszy w 14-letniej historii konkursu, Seminarium Finałowe odbywa się w Parku Naukowo-Technologicznym w Narodowym Centrum Badań Jądrowych. Uczestnicy i Opiekunowie pochodzący z całej Polski zostali zaproszeni do Instytutu, gdzie oprócz zaprezentowania swojej pracy przed Jury, mają możliwość zwiedzenia jedynego w Polsce reaktora jądrowego Maria.

Konkurs objęty jest patronatem Ministra Edukacji Narodowej i Ministerstwa Nauki i Szkolnictwa Wyższego. Partnerzy i sponsorzy, to: Województwo Mazowieckie, Miasto Otwock, Powiat Otwocki, Centrum Nauki Kopernik i System Antyplagiatowy Plagiat.pl.

Główne nagrody w konkursie to nagrody pieniężne sponsorowane przez Województwo Mazowieckie, nagrody rzeczowe ufundowało zaś Miasto Otwock i Powiat Otwocki.

Pokaz zjawiska fizycznego:

1. Autonomiczny dom - Bartosz Bartoszewski, Michał Ściubisz, II kl. LO

Budując nasz projekt, myśleliśmy przede wszystkim o naszym mieście uzdrowiskowym Busko Zdrój. Chcemy poprawić jakość tamtejszego powietrza. W tym celu zbudowaliśmy makietę samowystarczalnego domu. Zastosowaliśmy w nim systemy, dzięki którym wytwarza śladowe ilości szkodliwych substancji i jest tańszy w eksploatacji niż "standardowy" dom. Zbudowaliśmy od postaw m.in. biologiczną oczyszczalnię ścieków, wiatrak o osi pionowej, przyszły sposób transportu lotniczego, uprawę roślin i hodowlę zwierząt. Zastosowaliśmy również panele fotowoltaiczne.

2. Tornada i wiry - Bartosz Pater, Urszula Stokowska, Marta Błaż, IV–V kl. SP.

Prezentujemy przykłady wirowania różnych przedmiotów i substancji. Wir w butelkach z wodą, tonikiem, brokatem. Ogniste tornado w metalowym koszu. Pokazujemy, że wir można uzyskać nie tylko podczas obracania, ale również, gdy mamy wąskie szczeliny i różne temperatury w powietrzu. Uzyskujemy wówczas ogniste tornado w szklanej przeciętej rurze i dymne tornado z podpałki grillowej. Pokazujemy żartobliwe optyczne tornado w kalejdoskopie z pleksi. Do uzyskania wiru gazowego użyliśmy suchego lodu oraz doniczki i folii spożywczej. Tworzymy wiry z pary wodnej, gwałtownie uderzając gaz. Tornado finansowe to również z naszej strony żart, ale wynikający z eksperymentowania i wyjaśniania DLACZEGO? Dlaczego nie wszystkie monety magnesują się? Dlaczego magnes rozrywa balon z monetami? Na koniec BANALNY wir w słoiku z wodą i koralikami.

3. Astroblaster - Mateusz Machaj, Kacper Górski, II kl. LO

Często zdarza się, że gdy piłka mniejsza spada wraz z umiejscowioną pod nią większą na ziemię, odbija się ona znacznie wyżej niż to spodziewane. Postaramy się wprowadzić was w szczegóły takiego zjawiska oraz znaleźć układ zapewniający najbardziej widowiskowe odbicie. Projekt ASTROBLASTER ma na celu wyjaśnienie, czym jest przekazanie energii i pędu, za pomocą narzędzi matematycznych oraz fizycznej analizy doświadczalnej.

4. W krainie suchego lodu - Przemysław Sikorski, Aleksandra Guguła, III kl. GIM.

Seria ciekawych doświadczeń fizycznych z wykorzystaniem suchego lodu jako tematu przewodniego.

5. Źródła prądu elektrycznego - Denis Janiak, Mariusz Majzner, III kl. LO

Pokazujemy różne przykłady źródeł prądu elektrycznego. Ogniwa chemiczne: ogniwo galwaniczne (metalowe płytki w elektrolicie), żartobliwy kartoflany piesek z diodową główką, ogniwo cytrynowe. Ogniwo indukcyjne: prąd w zwojnicach uzyskujemy podczas spadania silnych magnesów neodymowych. Fotoogniwo otrzymaliśmy z płytek miedzianych, z których jedna była wytrawiana w ogniu palnika. Umieszczone w elektrolicie i oświetlane światłem UV są źródłem prądu w zamkniętym obwodzie. Termoogniwo umieszczamy w dwóch ośrodkach różniących się znacznie temperaturami. Otrzymujemy w obwodzie prąd dzięki termicznemu przesunięciu elektronów.

Praca naukowa:

1. Badanie natężenia światła po przejściu przez trzy filtry polaryzacyjne i jego zależność od prawa Malusa - Michał Kogut, Milena Piasecka, III kl. GIM.

Światło widzialne jest falą elektromagnetyczną i jak wszystkie fale elektromagnetyczne, składa się z połączonego oscylującego pola elektrycznego i magnetycznego, które są zawsze prostopadłe względem siebie. Polaryzacja światła polega na ukierunkowaniu oscylacji fali elektrycznej względem kierunku jej ruchu. Jeżeli światło pada na polaryzator liniowy, ma zastosowanie prawo Malusa. Nasz eksperyment miał na celu sprawdzić natężenie światła po przejściu przez trzy filtry polaryzacyjne i jego zależność od prawa Malusa. Aby sprawdzić tę zależność, najpierw dokonywaliśmy pomiarów wartości natężenia światła przechodzącego przez 2 i 3 filtry, później porównywaliśmy te wartości z wynikami obliczeń. Nasze badania pokazały, że prawo Malusa jest spełnione dla 3 filtrów.

2. Zastosowanie dekompozycji LU do oscylatora anharmonicznego – Mikołaj Myszkowski, II kl. LO

Oscylator anharmoniczny ma szerokie zastosowanie w wielu dziedzinach fizyki teoretycznej. W pracy przedstawiono ogólny przypadek nieliniowego oscylatora anharmonicznego przy użyciu reprezentacji macierzowej. Zapis Hamiltonianu za pomocą operatorów kreacji i anihilacji, a następnie rozkład metodą LU pozwala na otrzymanie nowych wyników, takich jak równanie poziomów energetycznych, które jest nieskończone, a przez to nierozwiązywalne. Przedstawiono także nową metodę przybliżoną, a otrzymane wartości są porównane do metod perturbacyjnych.

3. Czas zderzenia sprężystego - Wojciech Kulpa, Konrad Karaba, II kl. LO

Celem pracy jest pomiar czasu zderzenia sprężystego dwóch metalowych kul. Doświadczenie to wykonaliśmy, stosując dwie niezależne metody: analogową i cyfrową. W metodzie analogowej zastosowaliśmy kondensator, który zostanie naładowany, a następnie podczas zderzenia częściowo rozładowany. Teoria obwodów elektrycznych pozwoli nam obliczyć czas rozładowywania się kondensatora. W metodzie cyfrowej zastosujemy to, co komputer "lubi najbardziej" – liczenie. Co zatem będzie liczył? Liczył będzie impulsy taktowane przez wewnętrzny zegar o częstotliwości 1MH. Rozpoczęcie i zakończenie zliczania uwarunkowane będzie sygnałem zewnętrznym, czyli zetknięciem się kul. Zetknięte kule zmienią poziom logicznego "1" na "0" na jednym z pinów portu wejściowego mikrokontrolera. Wynik przekazany będzie na ekran komputera.

4. Bezpieczny lot – innowacyjna modyfikacja skrzydła - Bartosz Piechocki, III kl. LO

W dzisiejszych czasach przemysł lotniczy szybko się rozwija, a konstruktorzy samolotów muszą wymyślać nowe rozwiązania problemów, aby ich samolot był wydajniejszy i bezpieczniejszy. Jako pilot zauważyłem, że w małym lotnictwie problemem jest szczelina, która tworzy się pomiędzy skrzydłem a sterami podczas ich wychylania. Chciałem sprawdzić, jak mój pomysł na modyfikację skrzydła w postaci "załatania" szczeliny elastycznym materiałem ulepszy jego osiągi, więc wymyśliłem 2 eksperymenty. W pierwszym sprawdziłem, czy moja modyfikacja polepsza przepływ powietrza oraz siłę nośną. W drugim eksperymencie sam wykonałem profesjonalny tunel aerodynamiczny, który umożliwił mi dokładne badania nad siłą nośną, oporem i przepływem powietrza. Wyniki pokazały polepszenie się charakterystyk i osiągów skrzydła.

5. Microwave Resonant Cavity Thruster, silnik mikrofalowy - Jakub Jędrzejewski, IV kl. Tech.

Na początku XIX wieku angielski inżynier Roger Shawyer opublikował informację na temat swojego silnika, który wykorzystując fale elektromagnetyczne z zakresu mikrofal ma wytwarzać ciąg. Problemem okazało się wyjaśnienie teoretyczne powstawania siły, gdyż nikt nie jest w stanie do dnia dzisiejszego jednoznacznie wyjaśnić zasady działania silnika. Postawiłem sobie pytania: Czy on rzeczywiście działa? Jak to sprawdzić? W mediach pojawiły się informację, że silnik EmDrive łamie trzecią zasadę dynamiki Newtona. Czy aby na pewno? W celu sprawdzenia odpowiedzi na postawione pytania wykonałem własny model silnika wraz z systemem zasilania i kontroli. Ponieważ siły, które mogłyby być wygenerowane przez silnik, są bardzo małe, musiałem zaprojektować również specjalne stanowisko pomiarowe, które jest w stanie mierzyć siły z dokładnością przynajmniej rzędu μN, a nawet większą.

6. Fuzor – reaktor syntezy termojądrowej - Filip Tomczyk, Jakub Jędrzejewski, III i IV kl. Tech.

Teoria opisująca działanie fuzora została opracowana przez amerykańskiego wynalazcę Phila Farnswortha we wczesnych latach 30. ubiegłego wieku. Wspomniane urządzenie stanowi rozwiązanie największych problemów stających na drodze naukowców, pojawiających się przy próbach wywołania i utrzymania zjawiska fuzji termojądrowej innymi metodami. Mimo że jest to urządzenie powstałe ponad 85 lat temu, sposób jego działania w połączeniu z obecnie dostępną technologią powinien pozwolić dogłębnie oraz bezpiecznie badać zjawisko fuzji. Nieokiełznana dotąd fuzja może być w przyszłości dla nas bezpiecznym oraz odnawialnym źródłem energii, posiadającym sporą przewagę nad energią atomową. W przeciwieństwie do niej nie daje możliwości wystąpienia jakiejkolwiek awarii, a także nie generuje odpadów radioaktywnych o długim okresie połowicznego rozpadu. Dodatkowo wyłączenie reaktora jest niemal natychmiastowe. Energia powstała przy łączeniu lekkich jąder, czyli syntezie termojądrowej, jest dużo większa niż energia uwolniona przy rozszczepianiu ciężkich jąder uranu. Cecha negatywna syntezy to duża ilość włożonej pierwotnej energii, potrzebnej do zainicjowania reakcji. Jest ona jednak nieistotna, biorąc pod uwagę pozostałe zalety fuzji. Jednakże, aby móc marzyć o takiej przyszłości, trzeba zacząć kreować ją już dziś. Jest to nasz główny cel przyświecający tworzeniu fuzora. Założeniem naszego projektu jest budowa reaktora termojądrowego nazywanego fuzorem. Jest to akcelerator cząstek zdolny do przeprowadzenia fuzji deuteru. Głównym celem projektu było zdobycie i opublikowanie jak największych ilości danych powiązanych ze wspomnianym zjawiskiem, które mogą zostać wykorzystane w przyszłych badaniach. Podczas badań chcemy sprawdzać wpływ wielu czynników na zjawisko fuzji, m.in. wpływ materiału siatki klatki elektrostatycznej na przebieg fuzji oraz uzyskany bilans energetyczny. Projekt urządzenia jest oparty o fuzor Farnswortha–Hirscha, jednakże jest to praca całkowicie autorska, ponadto wprowadzimy wiele usprawnień.

7. Panta Rhei..... Czasem w górę - Dominik Filipczak, I kl. LO

Praca obejmuje zagadnienia związanie z podstawami reologii i zjawiskami, które zachodzą w płynach nienewtonowskich. Jej głównym tematem jest efekt Weissenberga. Zbadano czynniki wpływające na wynik efektu dla dwóch cieczy nienewtonowskich. Czynnikami tymi były: zmiana stężenia cieczy oraz szybkość obracania pręta, na który wznosi się ciecz.

8. Ile waży Ziemia - Julia Czachorowska, Alicja Grzybowska, Małgorzata Rękawiecka, III kl. GIM.

Zadaniem zespołu było jak najdokładniejsze wyznaczenie masy Ziemi na podstawie własnych pomiarów, bez użycia nowoczesnych rozwiązań i urządzeń. Inspirację zaczerpnęłyśmy z badań przeprowadzonych przez Eratostenesa. Postanowiłyśmy iść tym śladem i obliczyć masę Ziemi ze wzoru, do którego wyznaczyłyśmy w jak najprostszy sposób wszystkie potrzebne wielkości (za wyjątkiem stałej grawitacji). Podczas pracy tworzyłyśmy proste przyrządy służące do mierzenia kąta padania promieni słonecznych. Na podstawie jednoczesnych pomiarów w centrum i na północy Polski, wyliczyłyśmy promień Ziemi. Wyznaczyłyśmy też przyspieszenie ziemskie przez mierzenie czasu spadania upuszczanych ołowianych kulek. Otrzymana przez nas wartość masy Ziemi różni się o mniej niż 10% od wartości tablicowej.

Esej:

1. Kosmiczny mechanizm – Agata Ślusarska, III kl. GIM.

Ludzie w dzisiejszych czasach różnie spoglądają na świat i naukę. Niektórzy zachwycają się wszystkimi wspaniałościami, które nas otaczają, inni nie widzą niczego poza czubkiem własnego nosa, wykorzystują daną im władze do okrutnych celów lub są całkowicie obojętni na piękno Wszechświata.

2. Rozmyślania podczas sprzątania biurka - Maria Krzyżowska, I kl. LO

Dokąd zmierza nasz świat? Jak będzie wyglądał jego koniec? Pytania te nurtowały filozofów od wieków. Myślę, że każdy z nas zadał je sobie chociaż raz. Z odpowiedzią przychodzi nam druga zasada termodynamiki. W mojej pracy opowiem, czym jest entropia, dlaczego nazywamy ją strzałką czasu oraz jaki związek z tym wszystkim ma zabałaganione biurko.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Europejska Organizacja Badań Jądrowych CERN pod Genewą zatwierdziła kilka dni temu nowy eksperyment, który będzie badał własności najlżejszych cząstek materii, tzw. neutrin. Jest to pierwszy tego typu eksperyment przy Wielkim Zderzaczu Hadronów (LHC), który rozpocznie nową erę badań nad neutrinami. W pracach nad projektem istotną rolę odegrał dr Sebastian Trojanowski z Narodowego Centrum Badań Jądrowych (NCBJ).
      Planowany eksperyment FASERν (na końcu nazwy grecka mała litera „ni”) ma być nie tylko pierwszym takim detektorem w samym LHC, ale też w całej historii podobnych doświadczeń, w których dwa strumienie cząstek lecących w przeciwległych kierunkach zderzają się ze sobą. Otwiera to nową, fascynującą erę badań nad neutrinami, które są najbardziej nieuchwytnymi spośród znanych nam obecnie cząstek elementarnych.
      Neutrina produkowane w LHC to najbardziej energetyczne neutrina wytworzone kiedykolwiek przez człowieka. Można je jedynie porównać do neutrin powstałych w ekstremalnych zjawiskach takich jak zderzenia wysoko energetycznych promieni kosmicznych z atmosferą ziemską. Eksperyment FASERν przy LHC umożliwi laboratoryjne badanie tych cząstek przy energiach, dla których jak dotąd nie było to możliwe.
      Detektor FASERν będzie częścią większego, niedawno zatwierdzonego eksperymentu FASER, którego jednym z czterech pomysłodawców jest dr Sebastian Trojanowski związany z NCBJ oraz Uniwersytetem w Sheffield w Wielkiej Brytanii. FASERν to wyjątkowo mały detektor w porównaniu z typowymi eksperymentami neutrinowymi – mówi dr Trojanowski, który był bezpośrednio zaangażowany w prace przygotowawcze prowadzące do zatwierdzenia nowego detektora. Będzie to prostopadłościan o długości nieco ponad metra i szerokości jedynie 25cm. Tak niewielki rozmiar można było uzyskać dzięki precyzyjnemu dobraniu lokalizacji detektora, w miejscu gdzie trafia przeważająca część bardzo silnej wiązki neutrin produkowanych w LHC w punkcie kolizji protonów w detektorze ATLAS.
      Instalację nowego detektora będzie można przeprowadzić bardzo szybko, a zbieranie pierwszych danych rozpocznie się wraz z ponownym uruchomieniem LHC już w 2021 roku. FASERν może również utorować drogę do innych eksperymentów neutrinowych w przyszłych zderzaczach cząstek, zaś rezultaty tych eksperymentów będą mogły zostać użyte podczas planowania przyszłych, znacznie większych detektorów neutrin – mówi dr Jamie Boyd, jeden z liderów projektu FASER, na co dzień pracujący w ośrodku CERN pod Genewą.
      Choć nowy detektor FASERν jest osobnym instrumentem badawczym w stosunku do głównego detektora FASER zatwierdzonego wcześniej w tym roku, współgranie obydwu części eksperymentu może odegrać kluczową rolę w prowadzonych badaniach nad fizyką neutrin. Dodatkowo, w gronie kilku fizyków teoretyków z NCBJ oraz laboratorium SLAC w Stanach Zjednoczonych przeprowadziliśmy już pierwsze analizy ekscytujących perspektyw na odkrycie całkiem nowych cząstek elementarnych przy współudziale obu części eksperymentu FASER. Planujemy dalsze takie badania w przyszłości – wyjaśnia dr Trojanowski.
      Badania wysoko energetycznych neutrin nie tylko pomogą nam lepiej zrozumieć przebieg burzliwych zdarzeń nieustannie zachodzących na styku atmosfery ziemskiej z przestrzenią kosmiczną, lecz również rzucą więcej światła na naturę oddziaływań tych trudnych do detekcji cząstek. Teoretyczne spekulacje dotyczące istnienia neutrin sięgają lat 30. XX wieku, ale pierwsza ich eksperymentalna obserwacja nastąpiła dopiero niemal ćwierk wieku później. W późniejszym okresie opracowano teoretycznie dość szczegółowy opis oddziaływań neutrin z innymi cząstkami materii, który nadal jednak nie został dogłębnie przetestowany eksperymentalnie, szczególnie w obszarze wysokich energii charakterystycznych dla detektora FASERν. Jednym z głównych celów eksperymentu będzie sprawdzenie, czy dokładne pomiary własności neutrin w tym zakresie energii są zgodne z przewidywaniami teoretycznymi i naszym obecnym stanem wiedzy, czy też nadszedł czas na weryfikację tych poglądów.
      Badanie neutrin jest jedną ze specjalności polskich fizyków i współpracujących kilku polskich ośrodków. Między innymi Warszawska Grupa Neutrinowa, której istotną część stanowią naukowcy z NCBJ, bierze udział w wielkim eksperymencie neutrinowym T2K w Japonii i przygotowuje kolejny eksperyment z planowanym jeszcze potężniejszym detektorem HyperKamiokande. W porównaniu z wielkimi eksperymentami neutrinowymi ulokowanymi w kopalniach jak T2K czy oceanach lub lodach Antarktydy, FASERν jest nową jakością i powinien dać naukowcom cenne oraz stosunkowo tanie narzędzie badania otaczającego nas świata.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      European XFEL i Narodowe Centrum Badań Jądrowych (NCBJ) w Otwocku-Świerku pod Warszawą zamierzają ustanowić pierwsze ultraszybkie połączenie komputerowe Niemiec i Polski. Celem przedsięwzięcia jest wykorzystanie Centrum Superkomputerowego CIŚ w NCBJ do przetwarzania i analizy danych generowanych w European XFEL.
      Dedykowane połączenie komputerowe pomiędzy Hamburgiem i NCBJ będzie zapewniało szybkość transferu 100 gigabitów na sekundę (Gbit/s). Z wyjątkiem szybszego połączenia z DESY, to połączenie będzie około 100 razy szybsze niż obecne typowe połączenie internetowe European XFEL z innymi instytutami badawczymi. Dzięki niemu transfer danych dla średniego eksperymentu w obiekcie zajmuje około miesiąca . Dla porównania, szybkie łącza internetowe dla gospodarstw domowych zazwyczaj zapewniają około 250 Mb/s przy pobieraniu danych. Nowe połączenie będzie co najmniej 400 razy szybsze.
      W projekcie instalacji nowego szybkiego połączenia dla przesyłu danych, wraz z European XFEL i NCBJ, wezmą również udział: Niemiecka Krajowa Sieć Badań i Edukacji (DFN), Centrum Superkomputerowo-Sieciowe w Instytucie Chemii Bioorganicznej w Poznaniu (PCSS), Naukowa i Akademicka Sieć Komputerowa (NASK) oraz Deutsches Elektronen-Synchrotron (DESY). Pod koniec maja tego roku partnerzy podpisali protokół ustaleń, który posłuży jako podstawa i punkt wyjścia do ustanowienia nowego szybkiego połączenia. Można je w dużej mierze zbudować na istniejącej infrastrukturze technicznej, ale trzeba będzie dodać pewne szczególne elementy. Na przykład połączenie między niemieckimi i polskimi sieciami badawczymi będzie możliwe dzięki Uniwersytetowi Europejskiemu Viadrina we Frankfurcie nad Odrą i sąsiedniemu polskiemu miastu Słubice.
      Połączenie z NCBJ zapewni dodatkowe zasoby uzupełniające obecne zlokalizowane w Centrum Obliczeniowym DESY, gdzie wszystkie dane eksperymentalne z europejskiego XFEL były dotychczas analizowane i gdzie większość przetwarzania danych będzie nadal wykonywana.
      Dzięki laserowi rentgenowskiemu dostarczającemu do 27 000 impulsów na sekundę, najszybsze detektory urządzenia umożliwiają przechwytywanie do 8000 obrazów w wysokiej rozdzielczości na sekundę. W połączeniu z innymi danymi z lasera rentgenowskiego i jego instrumentów badawczych uzyskuje się ogromny strumień danych, wymagający specjalnego zarządzania i analizy w celu zapewnienia prawidłowego uzyskiwania informacji naukowych. Strumień danych może osiągnąć nawet wielkość 1 petabajta na tydzień w szczytowym czasie działania użytkownika, co odpowiada milionowi gigabajtów (GB). Analiza tych danych stanowi podstawę do określenia trójwymiarowej struktury molekuł, badania niezwykle szybkich procesów za pomocą tak zwanych filmów molekularnych oraz badania nowych i ultraszybkich zjawisk w badaniach materiałowych.
      Robert Feidenhans’l, dyrektor zarządzający European XFEL, powiedział: Współpraca z NCBJ w dziedzinie analizy danych jest przełomowym krokiem w kierunku coraz ściślejszego powiązania badań w Europie. Dodatkowe zasoby obliczeniowe nie tylko zwiększą wydajność, ale również zapewnią większą elastyczność operacyjną, co jest bardzo mile widziane. Musimy zwiększyć wymaganą wydajność obliczeniową dla naszych eksperymentów i cieszymy się, że wspólnie z naszymi partnerami NCBJ i DESY znaleźliśmy znakomite rozwiązanie.
      European XFEL to europejski laser na swobodnych elektronach zbudowany międzynarodowym wysiłkiem w Hamburgu w Niemczech. Narodowe Centrum Badań Jądrowych jest polskim współudziałowcem tej inwestycji. XFEL rozpoczął badania we wrześniu 2017 r. W liczącym ponad 3 km długości tunelu elektrony najpierw rozpędzane są do prędkości bliskiej prędkości światła, a następnie przepuszczane są przez specjalnie ukształtowane pole magnetyczne, co zmusza je do emisji promieniowania elektromagnetycznego o bardzo dobrze kontrolowanych parametrach. Wytworzone w ten sposób wiązki rentgenowskie docierające do hali eksperymentalnej w ultrakrótkich impulsach mogą być wykorzystywane przez fizyków, chemików, biologów i inżynierów do badania materii i procesów w niej zachodzących.
      PolFEL to polski laser na swobodnych elektronach budowany w NCBJ w Świerku na bazie doświadczeń zdobytych przy budowie lasera XFEL w Hamburgu. PolFEL będzie jedynym tego typu urządzeniem w Europie północno-wschodniej. Ze względu na swoją konstrukcję, w tym nadprzewodzące źródło elektronów opracowane przez naukowców ze Świerka, laser będzie oferował możliwości wykonywania badań dotąd niedostępnych na żadnym urządzeniu na świecie.
      Narodowe Centrum Badań Jądrowych jest instytutem działającym na podstawie przepisów ustawy o instytutach badawczych. Ministrem nadzorującym instytut jest minister energii. NCBJ jest największym instytutem badawczym w Polsce zatrudniającym ponad 1100 pracowników, w tym ponad 200 osób ze stopniem naukowym doktora, z czego ponad 60 osób ma status samodzielnych pracowników naukowych. W NCBJ pracuje ponad 200 osób z tytułem zawodowym inżyniera. Główna siedziba instytutu znajduje się w Otwocku w dzielnicy Świerk, gdzie zlokalizowany jest ośrodek jądrowy należący do NCBJ, w tym reaktor badawczy Maria. Instytut prowadzi badania naukowe i prace rozwojowe oraz wdrożeniowe w obszarze powiązanym z szeroko rozumianą fizyką subatomową, fizyką promieniowania, fizyką i technologiami jądrowymi oraz plazmowymi, fizyką materiałową, urządzeniami do akceleracji cząstek oraz detektorami, zastosowaniem tych urządzeń w medycynie i gospodarce oraz badaniami i produkcją radiofarmaceutyków. Instytut posiada najwyższą kategorię A+ przyznaną w wyniku oceny polskich jednostek naukowych dokonanej w 2017 r. Pozycję naukową instytutu wyznacza także liczba publikacji (ok. 500 rocznie) i liczba cytowań mierzona indeksem Hirscha (ponad 140). Są to wartości lokujące NCBJ w pierwszej piątce wśród wszystkich jednostek badawczych i akademickich w Polsce prowadzących porównywalne badania.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W ubiegłą środę (12 czerwca) w Wiedniu ogłoszono listę eksperymentów, które w ramach współpracy Chin i ONZ znajdą się na pokładzie chińskiej stacji kosmicznej. Wśród dziewięciu przyjętych do realizacji projektów znalazł się eksperyment POLAR-2: Gamma-Ray Burst Polarimetry on the China Space Station. Projekt przygotowało konsorcjum z udziałem Narodowego Centrum Badań Jądrowych (NCBJ).
      Od ponad 50 lat naukowcy poprzez detektory umieszczone na satelitach, obserwują na niebie silne rozbłyski promieniowania gamma. Ich pochodzenie przez lata było tajemnicą, dziś wiąże się je z dwoma najbardziej energetycznymi typami eksplozji we Wszechświecie – zderzeniami gwiazd neutronowych bądź też gwiazdy neutronowej z czarną dziurą oraz z wybuchami hipernowych, kończącymi życie najmasywniejszych gwiazd. Wiemy, że podczas tych zjawisk uwalniana jest ogromna energia, jednak nadal nie całkiem rozumiemy, jakie procesy prowadzą do emisji najbardziej energetycznej części powstającego w ich trakcie promieniowania – wyjaśnia prof. Agnieszka Pollo, kierownik Zakładu Astrofizyki NCBJ. Sądzimy, że dużą rolę odgrywa pole magnetyczne układu będącego źródłem rozbłysku. Aby zbadać tę hipotezę, należy zebrać jak najwięcej informacji na temat polaryzacji docierającego do nas podczas rozbłysku promieniowania gamma. Kosmiczne promienie gamma są absorbowane przez atmosferę i nie docierają do powierzchni Ziemi, dlatego obserwacje rozbłysków gamma i ich polaryzacji trzeba prowadzić na przykład na stacji kosmicznej. Pierwsza współorganizowana przez nas misja POLAR, zrealizowana w 2016 r. na pokładzie chińskiego laboratorium kosmicznego Tiangong-2, zaobserwowała 55 rozbłysków, z których pięciu udało się zmierzyć polaryzację – uzupełnia prof. Pollo. Liczymy na to, że POLAR-2 dostarczy znacznie więcej znacznie bardziej szczegółowych informacji.
      Naukowcy i inżynierowie z Narodowego Centrum Badań Jądrowych uczestniczyli w pierwszym eksperymencie POLAR m.in. przygotowując elektronikę, prototypując plastikowe detektory scyntylacyjne i analizując zebrane dane. Dla eksperymentu POLAR-2 chcemy zaprojektować i zbudować układy elektroniczne odbierające dane bezpośrednio z detektora – opowiada mgr inż. Dominik Rybka z Zakładu Elektroniki i Systemów detekcyjnych NCBJ, współtwórca elektroniki wykorzystanej w 2016 r. Nasze układy wyposażymy w odpowiednie, stworzone u nas oprogramowanie. Zamierzamy także zaprojektować, zbudować i oprogramować elektronikę, która przygotuje do wysłania na ziemię sygnały odebrane wcześniej z detektorów. Kolejnym naszym zadaniem ma być budowa specjalnego zasilacza niskiego napięcia, zasilającego cały instrument.
      Polscy naukowcy będą również brać udział w analizie danych zebranych przez detektor.
      Poza NCBJ w skład konsorcjum POLAR-2 wchodzą: Uniwersytet Genewski, Max Planck Institute For Extraterrestial Physics oraz Instytut Fizyki Wysokich Energii Chińskiej Akademii Nauk.
      Naukowcy spodziewają się, że nowa aparatura zacznie zbierać dane w 2024 roku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rozwiązywanie wielu problemów w fizyce nastręcza fundamentalnych trudności związanych ze złożonością obliczeniową. Konwencjonalne komputery, w tym nawet superkomputery, są niewystarczające do rozwiązywania skomplikowanych problemów matematycznych związanych z kwantowym opisem materii, ani do symulowania układów kwantowych nawet z zaledwie 30 cząstkami.
      Potrzebne są lepsze metody i narzędzia obliczeniowe, miedzy innymi po to aby zrozumieć i racjonalnie zaprojektować nowe materiały, których właściwości często zależą od kolektywnego zachowania setek czy tysięcy kwantowych cząstek czy też do projektowania nowy urządzeń w nanotechnologii. Od pewnego czasu takimi narzędziami stały się symulatory kwantowe, które pozwalają na badanie układów kwantowych, trudnych do zbadania w laboratorium i niemożliwych do modelowania za pomocą superkomputera. W tym przypadku symulatory są urządzeniami specjalnego przeznaczenia, zaprojektowanymi w celu zapewnienia wglądu w określone zjawiska fizyczne.
      Symulatory kwantowe zostały zrealizowane na wielu platformach eksperymentalnych, w tym w systemach ultrazimnych gazów kwantowych, w systemach fotonicznych i w obwodach nadprzewodzących. Jednym z matematycznych narzędzi do modelowania, badania i konstruowania symulatorów są grafy kwantowe, które umożliwiają między innymi tworzenie i formalną analizę modeli i zjawisk w fizyce mezoskopowej wykorzystywanej do uzyskania teoretycznego zrozumienia i rozwoju nanotechnologii.
      W matematyce graf kwantowy jest liniową, sieciową strukturą wierzchołków połączonych krawędziami o określonej długości. Praktycznym przykładem takiego grafu może być sieć energetyczna składająca się z linii przesyłowych (krawędzi) połączonych w stacjach transformatorowych (wierzchołki). Równania różniczkowe opisywałyby następnie napięcie wzdłuż każdej z linii (krawędzi), wraz z warunkami brzegowymi dla każdego wierzchołka, zapewniając, że prąd dodany na wszystkich krawędziach zsumuje się do zera w każdym wierzchołku.
      Grafy kwantowe były po raz pierwszy badane przez amerykańskiego fizykochemika, dwukrotnie nagrodzonego Nagroda Nobla, Linusa Paulinga jako modele dynamiki swobodnych elektronów w cząsteczkach organicznych, takich jak naftalen. Grafy pojawiają się także w różnych kontekstach matematycznych, na przykład jako układy modelowe w chaosie kwantowym, w badaniach sieci falowodów, w kryształach fotonicznych i w opisie zjawiska lokalizacji Andersona.
      Grafy kwantowe znajdują zastosowanie jako idealizacja rzeczywistych sieci fizycznych, a do ich najbardziej niezwykłych własności należy izospektralność. Mianowicie wykazano, że istnieją grafy o różnych kształtach, które posiadają dokładnie takie samo widmo stanów energetycznych! Czyli są izospektralne. Oznacza to, że różne systemy fizyczne dające się opisać izospektralnymi grafami będą miały analogiczne własności.
      W świecie rzeczywistym grafy nie są układami zamkniętymi, innymi słowy mają otwarte, niezakończone krawędzie, które analizę takich grafów czynią znacznie trudniejszą. Do takiej analizy fizykom na pomoc przyszły klasyczne symulatory grafów kwantowych w postaci sieci mikrofalowych.
      W przełomowych badaniach wykonanych w Instytucie Fizyki PAN wykazano, że grafy kwantowe z symetrią i bez symetrii ze względu na odwrócenie czasu mogą być eksperymentalnie symulowane przez klasyczne sieci mikrofalowe. Sieci te mogą być także wykorzystywane do badania układów z bardzo silną dyssypacją. Ponieważ sieci mikrofalowe mogą symulować druty kwantowe i wiele innych struktur, proponowane badania pogłębiają także naszą wiedzę o właściwościach tych układów, która jest bardzo ważna z perspektywy badań podstawowych a także przyszłych zastosowań. Ten bardzo ważny kierunek badań matematycznych i fizycznych został zapoczątkowany przez słynne pytanie polsko-amerykańskiego matematyka i fizyka Marka Kaca „Czy słyszymy kształt bębna?”, które w wypadku systemów jednowymiarowych może być zmienione na pytanie „Czy słyszymy kształt grafu?”.
      W artykule, który ukazał się w prestiżowym czasopiśmie Physical Reviev Letters, polsko-czeski zespół autorów z Instytutu Fizyki PAN i Uniwersytetu w Hradcu Králové przedstawił ważny wynik: pierwszą eksperymentalną realizację grafów innych niż grafy Weyla. Takie grafy nie są scharakteryzowane przez prawo Weyla, które opisuje średnią gęstość rezonansów na podstawie ich całkowitej długości. Wykorzystując sieci mikrofalowe, które symulują grafy kwantowe, badacze pokazali, że istnieją grafy, które nie są zgodne z charakterystyką prawa Weyla.
      Jak podkreśla lider zespołu, współautor pracy profesor Leszek Sirko: w Instytucie Fizyki zademonstrowaliśmy po raz pierwszy, że przejście z grafu Weyla na graf nie-Weyla zachodzi, jeśli wprowadzimy zrównoważony wierzchołek, w którym liczby połączeń ze światem zewnętrznym i wewnętrznych krawędzi są takie same.
      Na rys. 1 panele (a) i (b) pokazują, odpowiednio, schematy grafów Weyla i nie-Weyla. Panele (c) i (d) przedstawiają odpowiednie sieci mikrofalowe Weyla i nie-Weyla zbudowane z koncentrycznych kabli i złączy mikrofalowych. Rys. 2 przedstawia rezonanse eksperymentalnie przebadanych grafów mikrofalowych Weyla i nie-Weyla. Zgodnie z oczekiwaniami, teoretycznie (czerwone strzałki) grafy nie-Weyla zawierające wierzchołek zrównoważony z dwoma nieskończonymi odprowadzeniami L1∞ i L2∞ wykazują mniejszą liczbę rezonansów. Przedstawione w Physical Review Letters wyniki wyraźnie pokazują, że liczba mierzonych rezonansów może znacząco zależeć od sposobu, w jaki mierzony system jest podłączony do świata zewnętrznego.
      Podobny problem pojawia się przy rozważaniu sieci zbudowanych z falowodów kwantowych. Są to systemy mezoskopowe zbudowane ze ścieżek o szerokości w skali nanometrów. Zdaniem autorów pracy w opisie takiego systemu widmo operatora Laplace'a zbiega się z widmem operatora Laplace'a analogicznego grafu kwantowego modelowanego przez nasze sieci mikrofalowe. W związku z tym, lepsze zrozumienie właściwości modeli zbudowanych z naszych sieci mikrofalowych powinno pozwolić na stworzenie nowych subtelnych narzędzi dla kwantowej nanotechnologii, które umożliwią ingerowanie we właściwości struktur kwantowych bez konieczności ich wewnętrznej przebudowy. Takie struktury należy po prostu odpowiednio połączyć z otaczającym je światem.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Detektor POLAR został uruchomiony we wrześniu 2016 r. na pokładzie chińskiego laboratorium kosmicznego Tiangong-2. Naukowcy opublikowali właśnie pierwsze wyniki naukowe w czasopiśmie Nature Astronomy. POLAR jest efektem współpracy pomiędzy Szwajcarią (Uniwersytet w Genewie i Paul Scherrer Institut), Polską (Narodowe Centrum Badań Jądrowych) i Chinami.
      Błyski gamma (GRB) są obserwowane jako bardzo krótkotrwałe sygnały rentgenowskie pochodzące ze źródeł, które znajdują się w kosmologicznych odległościach od Ziemi. Te źródła emitują w ciągu kilku sekund więcej energii niż Słońce w czasie całego swojego życia i nie wiadomo, jak to robią. Kierunki błysków nie powtarzają się, więc prawdopodobnie emisji towarzyszy jakaś nieodwracalna katastrofa kosmiczna. Obecnie GRB obserwowane są średnio ok. raz dziennie przez kilka detektorów satelitarnych. Od lat 60/70 XX w. mierzone są kierunki błysków, intensywności i energie fotonów gamma oraz ich zmienność w czasie. POLAR otworzył nowe "okno": pomiar polaryzacji tego promieniowania.
      POLAR to największy detektor przeznaczony do pomiaru polaryzacji kwantów gamma z GRB, wystarczająco duży i precyzyjny, aby wykonać pomiary wielu błysków i wiarygodnie określić polaryzację. POLAR zmierzył 55 GRB. Do określenia polaryzacji potrzeba tysięcy fotonów z GRB. Z opublikowanych właśnie pierwszych danych na temat polaryzacji pięciu błysków gamma wynika, że wyznaczony stopień polaryzacji fotonów w błyskach we wszystkich przypadkach jest bardzo mały. W przypadku najjaśniejszego błysku było możliwe zmierzenie polaryzacji oddzielnie w kolejnych chwilach czasu. Okazało się, że w każdym momencie pomiaru została stwierdzona wysoka polaryzacja, ale kierunek polaryzacji obracał się w czasie.
      Obserwowana polaryzacja wymaga kierunkowego uporządkowania źródła emisji, a szybka zmienność kierunku polaryzacji sugeruje jakąś nową, nieznaną i niezbadaną własność emitera. Zjawisko to może być bardzo interesujące. Jeśli chcemy lepiej zrozumieć proces emisji GRB, musimy zbudować o wiele większy detektor niż POLAR. Obecnie naukowcy przygotowują bardziej wydajny detektor POLAR-2 i mają nadzieję uruchomić go w 2022 roku na następnej chińskiej stacji kosmicznej.
      Współtwórcami kluczowych elementów eksperymentu POLAR byli polscy naukowcy i inżynierowie z Narodowego Centrum Badań Jądrowych*. Bezpośrednio w prace zaangażowanych było ok. 10 osób, w tym z łódzkiej Pracowni Fizyki Promieniowania Kosmicznego NCBJ i z Zakładu Elektroniki i Systemów Detekcyjnych NCBJ w Świerku. Jednym z osiągnięć współpracy było zaprojektowanie i wybudowanie centralnego układu dokonującego selekcji przypadków (trygera) i oprogramowanie go. Z uwagi na ograniczoną możliwość komunikacji urządzenia satelitarnego z Ziemią przesyłane dane muszą podlegać selekcji jeszcze w kosmosie. M.in. odrzucane są zdarzenia wywołane przez jonizujące cząstki promieniowania kosmicznego. Najciekawsze są zdarzenia, podczas których w detektorze nastąpiło co najmniej podwójne rozproszenie fotonu gamma w bardzo krótkim odstępie czasu. Takie przypadki wykorzystuje się od określenia polaryzacji fotonów gamma z rozbłysku.
      W pracowni NCBJ w Łodzi powstał prototyp zasilacza wysokiego napięcia dla 25 fotopowielaczy POLARa. Jest to projekt zmarłego w 2016 r. znakomitego elektronika p. Jacka Karczmarczyka. Oprócz prac technicznych Polacy uczestniczyli także we wszystkich fazach testowania detektora podczas badań kwalifikacyjnych oraz funkcjonalnych. Wszystkie elementy detektora muszą wytrzymać ekstremalne warunki: próżnię, gwałtowne wstrząsy, duże przeciążenia, wysoką i niską temperaturę, a także wysokie dawki promieniowania.
      W Świerku prototypowano także plastikowe detektory scyntylacyjne, służące do detekcji promieniowania gamma. Matryca 1600 takich scyntylatorów jest sercem detektora POLAR.

      « powrót do artykułu
×
×
  • Create New...