Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Kończy się czas na zorganizowanie misji na Trytona

Recommended Posts

Powoli kończy się czas, w którym ludzkość będzie miała szansę przeprowadzić tanią misję badawczą o potencjalnie olbrzymim znaczeniu naukowym. Mowa tutaj o misji na Trytona, księżyc Neptuna.

Po raz pierwszy i ostatni mieliśmy szansę przyjrzeć się Trytonowi w 1989 roku, kiedy to mijała go sonda Voyager 2. Wykonała ona zdjęcia jednej strony księżyca. Jednak były to zdjęcia wyjątkowe. Widać było bowiem na nich gejzery, których nikt nie spodziewał się w tak odległym i zimnym miejscu. Naukowcy sądzą, że na Trytonie istnieje podziemny ocean., w którym może istnieć życie. Byłaby to olbrzymia sensacja, tym bardziej, że Tryton znajduje się daleko poza ekosferą.

Widzieliśmy tylko część jego powierzchni, a było to w roku 1989. Sądzimy, że Tryton posiada ocean. Jego orbita jest silnie nachylona względem równika planety, co oznacza, że mógł on zostać przechwycony przez Neptuna z Pasa Kuipera, mówi Louise Prockter, dyrektor Lunar and Planetary Institute.

Procker i jej zespół proponują, by w ramach prowadzonego przez NASA programu Discovery zorganizować tanią misję, która odwiedzi Trytona. To jednak nie będzie łatwe, gdyż inne zespoły naukowe mają pomysły na inne misje, w tym badanie Wenus czy przywiezienie na Ziemię próbek z Marsa. Jeśli jednak Procker przekonałaby NASA do swojego pomysłu, to decyzje muszą zapaść naprawdę szybko. Biorąc pod uwagę czas przygotowywania misji, to nie wystartowałaby ona wcześniej niż w roku 2026, a to oznacza, że na Trytona przybyła by w roku 2038, czyli niemal w ostatnim momencie.

Jednym z celów proponowanej misji byłoby zrozumienie gejzerów, które zauważył Voyager. Uczeni przypuszczają, że to zjawisko podobne do tego, jakie występuje na Europie i Eceladusie.

Jednak zespół Prockter nie jest jedynym, który proponuje misję w tamte regiony. Inna grupa naukowa ma pomysł znacznie większej misji badającej Urana i Neptuna oraz ich księżyców. Jednak jej zorganizowanie w najbliższym czasie jest jeszcze mniej prawdopodobne. Poza tym misja na Tytana mogłaby przetrzeć szlak dla większej wyprawy lub tez być jej częścią.

Ponadto, jak zauważa Prockter, istnieją ważne powody, by na Trytona wybrać się już teraz, bez czekania na większą misję. Voyager zauważył bowiem bogate w azot pióropusze materiału na południowej półkuli Neptuna. Tak się bowiem złożyło, że gdy sonda tam przelatywała, akurat ten region planety był oświetlony przez Słońce, co prawdopodobnie przyczyniło się do powstania obserwowanego zjawiska. Jeśli chcemy zaobserwować to, co obserwował Voyager, musimy tam dotrzeć przed 2040 rokiem, podkreśla Prockter. Później bowiem Słońce przesunie się bardziej na północ i nie będzie można już obserwować podobnego zjawiska. Poza tym rozpoczęcie misji w 2026 roku pozwoli na niemal prostą podróż do celu. Na podobną okazję trzeba będzie poczekać ponad 80 lat.

Podawane przez Prockter terminy są dość odległe. Tym bardziej, gdy uświadomimy sobie, że sonda New Horizons dotarła do Pluton w ciągu 9 lat. Jednak była to duża misja wystrzelona za pomocą potężniejszej rakiety. Misja Trident, bo tak jest ona roboczo nazywana przez zespół Prockter, byłaby znacznie tańsza, użyto by mniejszej rakiety, a na orbitę Neptuna pojazd trafiłby po 12 latach podróży. Ponadto Prockter chce wykorzystać sprzęt zaprojektowany na potrzeby wcześniejszych misji, co dodatkowo obniżyłoby koszty. Trident zabrałaby ze sobą dwa aparaty, spektrometr i magnetometr. Sfotografowałaby niemal całą powierzchnię Trytona.

Tryton jest prawdopodobnie jednym z niewielu aktywnych geologicznie księżyców Układu Słonecznego.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Poczekajmy te 80 lat. Może świadomość ekologiczna wzrośnie na tyle, że zrezygnujemy z bezpośrednich interwencji w atmosfery badanych obiektów.

Share this post


Link to post
Share on other sites

Akurat w tym przypadku (dwa aparaty, spektrometr i magnetometr), zakładając, że nie doszłoby jakiejś katastrofy, badanie byłoby zdalne, bez wchodzenia w atmosferę, która i tak tam jest teoretyczna bardziej niż rzeczywista.

Ale ogólnie...

Edited by ex nihilo

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Krążący wokół Jowisza Ganimedes to największy księżyc w Układzie Słonecznym. Jest większy od najmniejszej planety, Merkurego. Na Ganimedesie znajduje się też największa w zewnętrznych częściach Układu Słonecznego struktura uderzeniowa. Planetolog Naoyuki Hirata z Uniwersytetu w Kobe przeanalizował jej centralną część i doszedł do wniosku, że w Ganimedesa uderzyła asteroida 20-krotnie większa, niż ta, która zabiła dinozaury. W wyniku uderzenia oś księżyca uległa znaczącej zmianie.
      Ganimedes, podobnie jak Księżyc, znajduje się w obrocie synchronicznym względem swojej planety. To oznacza, że jest do niej zwrócony zawsze tą samą stroną. Na znacznej części jego powierzchni widoczne są ślady tworzące kręgi wokół konkretnego miejsca. W latach 80. naukowcy doszli do wniosku, że to dowód na dużą kolizję. Wiemy, że powstały one w wyniku uderzenia asteroidy przed 4 miliardami lat, ale nie byliśmy pewni, jak poważne było to zderzenie i jaki miało wpływ na księżyc, mówi Naoyjuki Hirata.
      Japoński uczony jako pierwszy zwrócił uwagę, że miejsce uderzenia wypada niemal idealnie na najdalszym od Jowisza południku Ganimedesa. Z badan Plutona przeprowadzonych przez sondę New Horizons wiemy, że uderzenie w tym miejscu doprowadziło do zmiany orientacji osi planety, więc tak samo mogło stać się w przypadku Ganimedesa. Hirata specjalizuje się w symulowaniu skutków uderzeń w księżyce i satelity, wiedział więc, jak przeprowadzić odpowiednie obliczenia.
      Na łamach Scientific Reports naukowiec poinformował, że asteroida, która uderzyła w Ganimedesa, miała prawdopodobnie średnicę około 300 kilometrów i utworzyła krater przejściowy o średnicy 1400–1600 kilometrów. Krater przejściowy to krater uderzeniowy istniejący przed powstaniem krateru właściwego, czyli misy wypełnionej materiałem powstałym po uderzeniu. Z przeprowadzonych obliczeń wynika, że tylko tak duża asteroida mogła przemieścić wystarczającą ilość masy, by doszło do przesunięcia osi Ganimedesa na jej obecną pozycję.
      Przypomnijmy, że 14 kwietnia ubiegłego roku wystartowała misja Juice (Jupiter Icy Moons Explorer) Europejskiej Agencji Kosmicznej. Ma ona zbadać trzy księżyce Jowisza: Kallisto, Europę i Ganimedesa. Na jej pokładzie znalazły się polskie urządzenia, wysięgniki firmy Astronika, na których zamontowano sondy do pomiarów plazmy. Wszystkie trzy księżyce posiadają zamarznięte oceany. To najbardziej prawdopodobne miejsca występowania pozaziemskiego życia w Układzie Słonecznym. W lipcu 2031 roku Juice ma wejść na orbitę Jowisza, a w grudniu 2034 roku znajdzie się na orbicie Ganimedesa i będzie badała ten księżyc do września 2035 roku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nowo odkryta planeta wielkości Neptuna ma gęstość większą od stali. Masa TOI-1853b jest niemal dwukrotnie większa niż planet jej rozmiarów. To zaś oznacza, że musi składać się ze znacznie większego odsetka skał, niż można by się spodziewać. Dlatego naukowcy z Włoch i Wielkiej Brytanii uważają, że planeta powstała w wyniku zderzenia innych planet.
      Jak czytamy na łamach Nature, zderzenie odrzuciło lżejszy materiał, jak woda i atmosfera, pozostawiając planetę złożoną w olbrzymiej mierze ze skał. W naszym Układzie Słonecznym mamy dowody na potężne kolizje między planetami. Dowodem takim jest istnienie Księżyca. Dysponujemy też dowodami na zderzenia pomiędzy mniejszymi egzoplanetami. Wiemy, że egzoplanety są niezwykle zróżnicowane. Wiele z nich nie ma odpowiedników w Układzie Słonecznym, ale często te skaliste ciała niebieskie mają podobną masę i skład do naszych lodowych olbrzymów, Neptuna i Urana, mówi doktor Phil Carter z University of Bristol.
      Naukowcy przeprowadzili symulacje komputerowe, które miały pokazać, w jaki sposób mogła powstać planeta taka jak TOI-1853b. Stwierdzili, że planety, które dały jej początek, prawdopodobnie były bogate w wodę. Musiały zderzyć się z prędkością większą niż 75 km/s, by powstała planeta o takich parametrach jak TOI-1853b, dodaje Carter.
      Odkrycie potwierdza rolę zderzeń w powstawaniu planet. Zdobyta dzięki niemu wiedza pozwala łączyć to, co wiemy o ewolucji Układu Słonecznego z ewolucją innych systemów planetarnych. To niezwykle zaskakująca planeta. Zwykle planety zawierające tak dużo skał powinny tworzyć gazowe olbrzymy, jak Jowisz, którego gęstość jest podobna do gęstości wody. Tymczasem TOI-1853b ma rozmiary Neptuna, ale jest gęstsza niż stal. Wykazaliśmy, że taka planeta może powstać, jeśli doszło do wysokoenergetycznych zderzeń innych planet, podsumowuje Jingyao Dou z Bristolu.
      Teraz badacze chcą jeszcze dokładniej przyjrzeć się TOI-1853b, spróbować dokładnie określić jej skład i poszukać ewentualnych resztek atmosfery.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Indyjska misja Chandrayaan-3 wylądowała na Księżycu. Tym samym Indie stały się czwartym, po USA, ZSRR i Chinach, krajem, którego pojazd przeprowadził miękkie lądowanie na Srebrnym Globie. Chandrayaan-3 wylądowała bliżej bieguna południowego, niż wcześniejsze misje. Biegun południowy jest ważny pod względem naukowym i strategicznym. Znajdują się tam duże zasoby zamarzniętej wody, które w mogą zostać wykorzystane jako źródło wody pitnej dla astronautów oraz materiał do produkcji paliwa na potrzeby misji w głębszych partiach kosmosu.
      Indie dokonały więc tego, co przed kilkoma dniami nie udało się Rosji. Jej pojazd, Luna 25, rozbił się 19 kwietnia o powierzchnię Księżyca. Tym samym porażką zakończyło się pierwsze od 47 lat lądowanie na Srebrnym Globie zorganizowane przez władze w Moskwie.
      Misja Chandrayaan-3 składa się z trzech elementów: modułu napędowego, lądownika i łazika. Na pokładzie lądownika Vikram znajduje się niewielki sześciokołowy łazik Pragyan o masie 26 kilogramów. Wkrótce opuści on lądownik i przystąpi do badań. Doktor Angela Marusiak z University of Arizona mówi, że ją najbardziej interesują dane z sejsmometru, w który wyposażono lądownik. Pozwoli on na badania wewnętrznych warstw Księżyca, a uzyskane wyniki będą miał olbrzymi wpływ na kolejne misje.
      Musimy się upewnić, że żadna potencjalna aktywność sejsmiczna nie zagrozi astronautom. Ponadto, jeśli chcemy budować struktury na Księżycu, muszą być one bezpieczne, dodaje. Trzeba tutaj przypomnieć, że USA czy Chiny planują budowę księżycowej bazy.
      Łazik i lądownik są przygotowane do dwutygodniowej pracy na Księżycu. Moduł napędowy pozostaje na orbicie i pośredniczy w komunikacji pomiędzy nimi, a Ziemią.
      Indie, we współpracy z USA i Francją, bardzo intensywnie rozwijają swój program kosmiczny. Lądowanie na Księżycu do kolejny ważny sukces tego kraju. Przed 9 laty Indie zaskoczyły świat umieszczając przy pierwszej próbie swój pojazd na orbicie Marsa.
      W najbliższych latach różne kraje chcą wysłać misje na Księżyc. Jeszcze w bieżącym miesiącu ma wystartować misja japońska. USA planują trzy misje komercyjne na zlecenie NASA, z których pierwsza ma wystartować jeszcze w bieżącym roku. Natomiast NASA przygotowuje się do powrotu ludzi na Księżyc. Astronauci mają trafić na Srebrny Glob w 2025 roku.
      Indie są jednym z krajów, które przystąpiły do zaproponowanej przez USA umowy Artemis Accords. Określa ona zasady eksploracji Księżyca i kosmosu. Umowy nie podpisały natomiast Rosja i Chiny.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA i DARPA ujawniły szczegóły dotyczące budowy silnika rakietowego o napędzie atomowym. Jądrowy silnik termiczny (NTP) DRACO (Demonstration Rocket for Agile Cislunar Operations) powstaje we współpracy z Lockheed Martinem i BWX Technologies. Najpierw zostanie zbudowany prototyp, następnie silnik do pojazdów zdolnych dolecieć do Księżyca, w końcu zaś silnik dla misji międzyplanetarnych. Jeszcze przed kilkoma miesiącami informowaliśmy, że DRACO może powstać w 2027 roku. Teraz dowiadujemy się, że test prototypu w przestrzeni kosmicznej zaplanowano na koniec 2026 roku.
      To niezwykłe przyspieszenie prac – trzeba pamiętać, że zwykle projekty związane z przestrzenią kosmiczną i nowymi technologiami mają spore opóźnienie – było możliwe dzięki częściowemu połączeniu prac, które zwykle odbywają się osobno, w drugiej i trzeciej fazie rozwoju projektu. To zaś jest możliwe dzięki wykorzystaniu sprzętu i doświadczeń z dotychczasowych misji w głębszych partiach kosmosu. Budujemy stabilną i bezawaryjną platformę, w której wszystko, co nie jest silnikiem, to technologie o niskim ryzyku, mówi Tabitha Dodson, odpowiedzialna z ramienia DARPA za projekt DRACO.
      Wiemy, że niedawno zakończyła się pierwsza faza projektu, w ramach którego powstał projekt nowego reaktora. Nie ujawniono, ile faza ta kosztowała. Kolejne dwie fazy mają budżet 499 milionów USD. Jeśli prototyp zda egzamin, powstanie silnik dla misji na Księżyc. Przyniesie on spore korzyści. Napędzane nim rakiety będą przemieszczały się szybciej, zatem szybciej dostarczą ludzi, sprzęt i materiały na potrzeby budowy bazy na Księżycu. Jednak największe korzyści z nowego silnika ujawnią się podczas misji na Marsa.
      Okno startowe misji na Czerwoną Planetę otwiera się co 26 miesięcy i jest dość wąskie. Dzięki lepszym silnikom i szybszym rakietom okno to można poszerzyć, co ułatwi planowanie i przeprowadzanie marsjańskich misji. Nie mówiąc już o tym, że skrócenie samej podróży będzie korzystne dla zdrowia astronautów poddanych promieniowaniu kosmicznemu. Prędkość obecnie stosowanych silników jest ograniczona przez dostępność paliwa i utleniacza. Silnik z reaktorem atomowym działałby dzięki ogrzewaniu ciekłego wodoru z temperatury -253 stopni Celsjusza do ponad 2400 stopni Celsjusza i wyrzucaniu przez dysze szybko przemieszczającego się rozgrzanego gazu. To on nadawałby ciąg rakiecie.
      Pomysłodawcą stworzenia napędu atomowego jest polski fizyk Stanisław Ulam, który przedstawił go w 1946 roku. Dziesięć lat później rozpoczęto Project Orion. Efektem prac było powstanie prototypowego silnika, który został przetestowany na ziemi. Obecnie takie testy nie wchodzą w grę. Zgodnie z dzisiejszymi przepisami naukowcy musieliby przechwycić gazy wylotowe, usunąć z nich materiał radioaktywny i bezpiecznie go składować. Dlatego też prototyp zostanie przetestowany na orbicie 700 kilometrów nad Ziemią. Ponadto w latach 50. wykorzystano wzbogacony uran-235, taki jak w broni atomowej. Obecnie użyty zostanie znacznie mniej uran-235. Można z nim bezpieczne pracować i przebywać w jego pobliżu, mówi Anthony Calomino z NASA. Drugi z podobnych projektów, NERVA (Nuclear Engine for Rocket Vehicle Application), doprowadził do stworzenia dobrze działającego silnika. Ze względu na duże koszty projekt zarzucono.
      Reaktor będzie posiadał liczne zabezpieczenia, które nie dopuszczą do jego pełnego działania podczas pobytu na ziemi. Dopiero po opuszczeniu naszej planety będzie on w stanie w pełni działać.
      W czasie testów zostaną sprawdzone liczne parametry silnika, w tym jego ciąg oraz impuls właściwy. Impuls właściwy obecnie stosowanych silników chemicznych wynosi około 400 sekund. W przypadku silnika atomowego będzie to pomiędzy 700 a 900 sekund. NASA chce też sprawdzić, na jak długo wystarczy 2000 kilogramów ciekłego wodoru. Inżynierowie mają nadzieję, że taka ilość paliwa wystarczy na napędzanie rakiety przez wiele miesięcy. Obecnie górny człon rakiety nośnej ma paliwa na około 12 godzin. Silniki NTP powinny być od 2 do 5 razy bardziej efektywne, niż obecne silniki chemiczne. A to oznacza, że napędzane nimi rakiety mogą lecieć szybciej, dalej i zaoszczędzić paliwo.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA tymczasowo straciła kontakt z Voyagerem 2, drugim najodleglejszym od Ziemi pojazdem kosmicznym wysłanym przez człowieka. Przed dwoma tygodniami, 21 lipca, popełniono błąd podczas wysyłania serii komend do Voyagera, w wyniku czego jego antena odchyliła się o 2 stopnie od kierunku wskazującego na Ziemię. W tej chwili Voyager, który znajduje się w odległości niemal 20 miliardów kilometrów od naszej planety, nie może odbierać poleceń ani przesyłać danych.
      W wyniku zmiany położenia anteny Voyager nie ma łączności z Deep Space Network (DSN), zarządzaną przez NASA siecią anten służących do łączności z misjami międzyplanetarnymi. W skład DSN wchodzą trzy ośrodki komunikacyjne, w Barstow w Kalifornii, w pobliżu Madrytu i Canberry. Rozmieszczono je tak, by każda misja w głębokim kosmosie miała łączność z przynajmniej jednym zespołem anten. Ośrodek z Canberry, którego jedna z anten jest odpowiedzialna za komunikację z sondą, będzie próbował skontaktować się z Voyagerem, w nadziei, że uda się nawiązać łączność.
      Na szczęście NASA zabezpieczyła się na tego typu przypadki. Kilka razy w roku Voyagery resetują położenie swoich anten tak, by mieć łączność z Ziemią. Najbliższy reset nastąpi 15 października. Jeśli więc wcześniej nie uda się połączyć z Voyagerem, będzie można się z nim skomunikować za 2,5 miesiąca.
      Voyager 2 został wystrzelony 20 sierpnia 1977 roku. Odwiedził Jowisza, Saturna, Urana i Neptuna, a w 2018 roku opuścił heliosferę i wszedł w przestrzeń międzygwiezdną, dostarczając intrygujących wyników badań. NASA nie po raz pierwszy nie ma kontaktu z sondą. W 2020 roku agencja nie kontaktowała się z nią przez 8 miesięcy, gdyż remontowana była antena DSS 43 w pobliżu Canberry, której zadaniem jest wymiana informacji z sondą.
      Voyagery zasilane są radioizotopowymi generatorami termoelektrycznymi, które zamieniają w prąd elektryczny ciepło generowane przez rozpad plutonu-238. Zapasy plutonu stopniowo się wyczerpują, więc naukowcy wyłączają kolejne zużywające prąd urządzenia. Najprawdopodobniej obie sondy stracą zasilanie w 2025 roku. Do tej pory jednak naukowcy spróbują wycisnąć z nich najwięcej, jak się da.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...