Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

U zdrowych neurologicznie osób nowe neurony nadal powstają nawet w 9. dekadzie życia

Recommended Posts

Neurogeneza, czyli proces powstawania nowych neuronów, zachodzi w ludzkich mózgach nawet w wieku 87 lat. Do takich wniosków doszli hiszpańscy naukowcy, którzy badali mózgi niedawno zmarłych osób.

W ostatnich latach naukowcy nie byli zgodni co do neurogenezy. Zastanawiano się m.in., jak długo (do jakiego wieku) zjawisko to się utrzymuje i jakich ewentualnie regionów mózgu dotyczy. Sporo badań dotyczyło hipokampa, ponieważ to część mózgu najsilniej związana z pamięcią, a logika podpowiada, że do magazynowania nowych wspomnień potrzebne są nowe neurony. Poza tym hipokamp to jedna ze struktur, które ulegają uszkodzeniu w przebiegu chorób neurodegeneracyjnych.

W zeszłym roku międzynarodowa grupa naukowców stwierdziła, że neurogeneza w hipokampie kończy się wraz z dzieciństwem. W artykule, który ukazał się w piśmie Nature Medicine, zespół Maríi Llorens-Martín z Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) w Madrycie dowodzi, że to nieprawda i neurogeneza utrzymuje się do bardzo zaawansowanego wieku.

Wcześniejsze badania wykazały, że na wczesnych etapach rozwoju komórki nerwowe zawierają DCX – białko związane z mikrotubulami, charakterystyczne dla migrujących neuronów (ang. doublecortin). Hiszpanie opierali się na tej informacji. Badano ludzi, od których śmierci minęło maksymalnie 10 godzin. Ich mózgi umieszczano w roztworze, który podtrzymuje świeżość tkanki nerwowej. Pobierano cienkie wycinki hipokampa i oglądano je pod mikroskopem w poszukiwaniu DCX.

Akademicy podkreślają, że do 9. dekady życia włącznie u zdrowych neurologicznie osób w zakręcie zębatym, który wchodzi w skład formacji hipokampa, identyfikowano liczne niedojrzałe neurony (komórki z DCX). Neurogeneza występowała w mózgach ludzi, którzy zmarli w wieku 43-87 lat.

Te same testy przeprowadzono na ludziach, którzy mieli chorobę Alzheimera (ChA). Tutaj znaleziono jednak niewiele przykładów neurogenezy, co sugeruje, że ChA nie tylko pozbawia pacjentów starych wspomnień, ale i nie dopuszcza do powstawania nowych. W tym przypadku liczba i proces dojrzewania neuronów pogarszały się wraz z postępami choroby.

Tłumacząc, czemu wyniki są inne od opublikowanych w zeszłym roku, ekipa Llorens-Martín powołuje się na połączenie ścisłej procedury pozyskiwania tkanek do badań i najnowocześniejszych technologii.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Inżynierowie z intelowskiej grupy Strategic Offensive Research & Mitigation (STORM) opublikowali pracę naukową opisującą nowy rodzaj pamięci dla procesorów. Pamięć taka miałaby zapobiegać atakom side-channel wykorzystującym mechanizm wykonywania spekulatywnego, w tym atakom na błędy klasy Spectre.
      Wymienienie w tym kontekście dziury Spectre nie jest przypadkiem. Zespół STORM powstał bowiem po tym, jak Intel został poinformowany przez Google'a i niezależnych badaczy o istnieniu dziur Meltdown i Spectre. Przypomnijmy, że są to błędy w architekturze procesorów. Meltdown występuje niemal wyłącznie w procesorach Intela, Spectre dotyczy wszystkich procesorów wyprodukowanych przed rokiem 2019, które wykorzystują mechanizm przewidywania rozgałęzień. Dziura Spectre ma większy wpływ na procesory Intela niż innych producentów.
      Główny rywal Intela, AMD, w dużej mierze poradził sobie z atakami typu Spectre zmieniając architekturę procesorów Ryzen i Epyc. Intel jak dotąd walczy ze Spectre za pomocą poprawiania oprogramowania. To dlatego – jak wykazały testy przeprowadzone przez witrynę Phoronix – średni spadek wydajności procesorów Intela spowodowany zabezpieczeniami przed Spectre jest aż 5-krotnie większy niż w przypadku procesorów AMD.
      Inżynierowie ze STORM opisali nowy rodzaj pamięci dla procesorów, którą nazwali Speculative-Access Protected Memory (SAPM). Ma być ona odporna na obecne i przyszłe ataki typu Spectre i podobne. Członkowie grupy STORM mówią, że większość ataków typu Spectre przeprowadza w tle te same działania, a SAPM ma domyślnie blokować takie operacje, co zapobiegnie obecnym i ewentualnym przyszłym atakom.
      Jak przyznają badacze Intela, zaimplementowanie pamięci SAPM negatywnie wpłynie na wydajność procesorów tej firmy, jednak wpływ ten będzie mniejszy niż wpływ obecnie stosowanych łatek programowych. Mimo że spadek wydajności dla każdego przypadku dostępu do pamięci SAPM jest dość duży, to operacje tego typu będą stanowiły niewielką część operacji związanych z wykonaniem oprogramowania, zatem całkowity koszt będzie niski i potencjalnie mniejszy niż spadek wydajności spowodowany obecnie stosowanymi rozwiązaniami, czytamy w opublikowanym dokumencie.
      SAPM może zostać zaimplementowany zarówno na poziomie adresu fizycznego jak i wirtualnego. W tym drugim przypadku pamięć byłaby kontrolowana z poziomu systemu operacyjnego. Jeśli zaś ten zostałby skompromitowany, a tak się często dzieje, SAPM nie będzie chroniła przed atakiem.
      W opublikowanej pracy czytamy, że jest to praca teoretyczna, dotycząca możliwych implementacji, co oznacza, że całościowa koncepcja nie jest jeszcze gotowa i jeśli w ogóle SAPM powstanie, będzie wymagała długotrwałych szczegółowych testów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Codzienne wstrzykiwanie przez 5 tygodni myszom z chorobą Alzheimera (ChA) 2 krótkich peptydów znacząco poprawia pamięć zwierząt. Terapia ogranicza także zmiany typowe dla ChA: stan zapalny mózgu oraz akumulację beta-amyloidu.
      U myszy, które przechodziły terapię, zaobserwowaliśmy słabsze nagromadzenie blaszek beta-amyloidu oraz zmniejszenie zapalenia mózgu - podkreśla prof. Jack Jhamandas z Uniwersytetu Alberty.
      Odkrycie bazuje na wcześniejszych ustaleniach odnośnie do związku AC253, który może blokować toksyczne oddziaływania beta-amyloidu. Podczas badań ustalono, że AC253 blokuje przyłączanie beta-amyloidu do pewnych receptorów komórek mózgu.
      Okazało się jednak, że choć AC253 zapobiega akumulacji beta-amyloidu, przez szybki metabolizm w krwiobiegu jest problem z jego docieraniem do mózgu. Wskutek tego, by terapia AC253 była skuteczna, potrzeba dużych ilości tego związku, co jest niepraktyczne i może zwiększyć ryzyko rozwoju odpowiedzi immunologicznej na leczenie. Teoretycznie mogłoby pomóc przekształcenie AC253 z formy wstrzykiwalnej w doustną tabletkę, ale AC253 jest zbyt złożony, by problem dało się rozwiązać w ten sposób.
      Jhamandas wpadł więc na pomysł, by "przeciąć" AC253 na dwa fragmenty i sprawdzić, czy można stworzyć dwie mniejsze nici peptydowe, które blokowałyby beta-amyloid w podobny sposób jak AC253. Podczas serii testów na genetycznie zmodyfikowanych myszach Kanadyjczycy odkryli dwa krótsze fragmenty AC253, które replikowały prewencyjne i regeneracyjne właściwości większego peptydu.
      Następnie naukowcy wykorzystali modelowanie komputerowe i sztuczną inteligencję do prac nad drobnocząsteczkowym lekiem. Zespół koncentruje się na wytworzeniu zoptymalizowanej doustnej wersji, tak by mogły się zacząć testy kliniczne na ludziach. Jhamandas podkreśla, że leki drobnocząsteczkowe są preferowane, bo taniej je wyprodukować, a poza tym mogą one być zażywane doustnie i łatwiej dostają się do mózgu z krwią.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzisiejsze społeczeństwo utożsamia piękno z jakością, przez co produkty spożywcze ze skazami, np. banan, na którym podczas dojrzewania pojawiają się brązowe plamy, są uznawana za gorsze i mniej atrakcyjne. Między innymi z tego powodu rocznie na świecie marnuje się 1,3 mld t jedzenia. Wzrasta też koszt i środowiskowy wpływ wykarmienia światowej populacji. Naukowcy z Uniwersytetu w Houston znaleźli na to jednak sposób - "humanizację" starzejących się produktów.
      Autorzy artykułu z Journal of the Association for Consumer Research odkryli, że przedstawianie niedoskonale wyglądających, ale nadal wartościowych odżywczo produktów z cechami ludzkimi sprawia, że stają się one dla potencjalnych konsumentów bardziej pociągające.
      Sugerujemy, że gdy starsze towary są uczłowieczane, prowadzi to do korzystniejszej oceny. [Innymi słowy] konsumenci spoglądają na nie łaskawszym okiem.
      Jak wyjaśnia prof. Vanessa Patrick, jej zespół oceniał, jak postawy wobec ludzkiego starzenia przekładają się na postawy wobec dojrzałych produktów spożywczych. W ramach eksperymentów antropomorfizowano banany, ogórki i cukinie. Banany opalały się np. na leżaku, a plastry ogórka układano w ludzką twarz.
      W świeżych produktach starzenie wywołuje widoczne zmiany, w dużej mierze podobnie jak u ludzi. Gdy jedzenie jest antropomorfizowane, mogą się więc pojawić skojarzenia z cechami/przejawami ludzkiego starzenia - podkreśla Patrick.
      Podczas studium bliskie ideałowi oraz lekko przejrzałe warzywa i owoce demonstrowano w wersji antropomorfizowanej i nieustawionej. Okazało się, że ludzie, którzy widzieli uczłowieczone przejrzałe produkty, oceniali je jako bardziej atrakcyjne niż ochotnicy oglądający te same produkty bez cech antropomorfizacji. Antropomorfizacja nie wpływała zaś na postrzeganie bardziej świeżych towarów.
      Naukowcy uważają, że właściciele czy menedżerowie sklepów powinni pomyśleć o podobnych strategiach promocji towarów, które zaczęły wykazywać oznaki starzenia, ale nadal pozostają smaczne i odżywcze.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Strach, który wywołują drapieżniki, może pozostawiać trwałe zmiany w obwodach neuronalnych dzikich zwierząt i wywoływać w ten sposób utrzymujące się bojaźliwe zachowania. Przypomina to zjawiska obserwowane w przebiegu zespołu stresu pourazowego (PTSD).
      Zespół Liany Zanette z Uniwersytetu Zachodniego Ontario wykazał, że wpływ kontaktu z drapieżnikami na mózgowe obwody strachu utrzymuje się poza okres występowania natychmiastowej reakcji "walcz lub uciekaj" i jest mierzalny nawet po ponad tygodniu. Dzieje się tak, mimo że w międzyczasie zwierzęta przebywają w naturalnych warunkach środowiskowych i społecznych.
      Uzyskane przez nas wyniki mają ogromne znaczenie dla naukowców zajmujących się badaniami biomedycznymi, zdrowiem psychicznym i ekologów. Stanowią bowiem poparcie dla stwierdzenia, że PTSD nie jest czymś nienaturalnym i pokazują, że trwałe skutki strachu wywołanego przez drapieżniki, które zapewne wpływają na rozrodczość i przeżywalność, to coś normalnego w świecie zwierząt.
      Zachowanie wspomnień zagrażających życiu spotkań z drapieżnikami jest korzystne ewolucyjnie, jeśli pomaga jednostce unikać w przyszłości takich zdarzeń. Autorzy coraz większej liczby badań biomedycznych przekonują, że w takim świetle PTSD stanowi koszt dziedziczenia prymitywnego ewolucyjnie mechanizmu, który przedkłada przeżycie nad jakość życia.
      Ekolodzy zauważają z kolei, że drapieżniki mogą wpływać na liczebność ofiar, nie tylko je zabijając, ale i strasząc. W ramach wcześniejszych badań ekipa Zanette wykazała, na przykład, że przestraszeni rodzice słabiej radzą sobie z opieką nad młodymi.
      W najnowszym studium wzięły udział schwytane sikory jasnoskrzydłe (Poecile atricapillus). Przez 2 dni pojedynczym osobnikom (15 samcom i 12 samicom) odtwarzano wokalizacje drapieżników albo niedrapieżników. Później ptaki trafiały do stada, które przez tydzień przebywało na zewnątrz i nie było wystawiane na żadne wskazówki eksperymentalne. Utrzymujące się bojaźliwe zachowania badano, mierząc u wylosowanych 15 ptaków reakcje na zawołania alarmowe P. atricapillus. Wpływ na mózgowe obwodu strachu określano zaś, mierząc poziom pewnego czynnika transkrypcyjnego w ciele migdałowatym i hipokampie (chodziło o białko ΔFosB, czyli czynnik transkrypcyjny należący do rodziny Fos).
      Wykorzystane ścieżki dźwiękowe składały się z dźwięków wydawanych albo przez 6 gatunków polujących na sikory białoskrzydłe (krogulca czarnołbistego, krogulca zmiennego, włochatkę małą, myszłowa rdzawosternego, drzemlika i puszczyka kreskowanego), albo przez 6 niezagrażających sikorom gatunków (krzyżówkę, żabę leśną, szarobrewkę śpiewną, dzięcioła kosmatego, dzięcioła włochatego i kowalika czarnogłowego). W głównym eksperymencie wokalizacje odtwarzano za dnia, łącznie przez 5 min w ciągu godziny. Dźwięki pojawiały się w losowych interwałach, przy czym odgłosy każdego z gatunków "nadawano" 1-4-krotnie co 2 godziny.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Aktywność fizyczna dobrze wpływa na nasze zdrowie. Najnowsze badania sugerują zaś, że ma też ona pozytywny wpływ na pamięć i uczenie się.
      Neurolodzy z Oregon Health & Science University (OHSU) zauważyli, że krótka intensywna aktywność fizyczna u myszy bezpośrednio wpływa na aktywność mózgu, który zwiększa liczbę połączeń pomiędzy neuronami w hipokampie.
      Aktywność fizyczna niewiele kosztuje, nie musisz mieć do tego karty wstępu na salę czy biegać po kilkanaście kilometrów, mówi jeden z autorów badań, doktor Gary Westbrook.
      Już wcześniejsze badania na ludziach i zwierzętach wskazywały, że regularne ćwiczenia pozytywnie wpływają na ogólne zdrowie mózgu. Jednak trudno było oderwać ten wpływ od wpływu na inne organy. Na przykład wiadomo, że ćwiczenia fizyczne wpływają pozytywnie na układ krążenia, co powoduje lepsze natlenienie całego organizmu, w tym mózgu. Nie można było więc wykluczyć, że mamy tutaj do czynienia z wpływem pośrednim.
      My, jako neurolodzy, nie przejmowaliśmy się wpływem ćwiczeń na mięśnie czy serce. Chcieliśmy wiedzieć, czy istnieje bezpośredni związek pomiędzy aktywnością fizyczną a korzyściami dla mózgu, mówi Westbrook.
      Naukowcy zaprojektowali więc badania, w ramach których badali reakcję mózgu myszy na pojedyncze epizody intensywnych ćwiczeń. Mysz, która prowadziła mało aktywny tryb życia, była umieszczana w kołowrotku i w ciągu dwóch godzin przebiegała kilka kilometrów.
      Badania wykazały, że takie epizody – odpowiadające wysiłkowi człowieka, który raz w tygodniu zagra z kolegami w koszykówkę lub przejdzie 4000 kroków – prowadziły do zwiększenia liczby synaps w hipokampie. Szczególną uwagę naukowców zwrócił wpływ ćwiczeń na gen Mtss1L, który dotychczas był zwykle ignorowany.
      Gen Mtss1L koduje proteinę, która ma wpływ na elastyczność ścian komórkowych. Naukowcy odkryli, że gdy gen jest aktywowany wskutek krótkich intensywnych ćwiczeń, pobudza on wzrost kolców dendrytycznych, wypustek pokrywających dendryty neuronów. Wykazano też, że wspomaga to proces uczenia się.
      W następnym etapie badań naukowcy chcą połączyć krótkie intensywne epizody ćwiczeń z epizodami nauki, by lepiej zrozumieć wpływ całego procesu na pamięć i uczenia się.

      « powrót do artykułu
×
×
  • Create New...