Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Alzheimera da się wyleczyć za pomocą... diod LED i głośników?

Recommended Posts

Obecnie choroba Alzheimera jest nieuleczalna. Istnieje nieco leków, które czasowo poprawiają funkcjonowanie chorych, jednak żaden z nich nie powstrzymuje ani znacząco nie spowalnia postępów choroby. Wszystkie dotychczasowe próby farmakologicznego leczenia zawiodły.

Tymczasem pojawiła się nadzieja na leczenie bez użycia środków chemicznych.

W najnowszym numerze Cell czytamy o eksperymentach, w wyniku których w mózgach myszy z alzheimerem poddanych działaniu światła i dźwięku doszło do zmniejszenia liczby blaszek amyloidowych oraz splątków neurofibrylarnych.

To fascynujący artykuł. I bardzo prowokacyjny pomysł. To nieinwazyjny, łatwy do zastosowania i tani sposób. Jeśli przynosiłoby to korzyści ludziom, byłoby cudownie, mówi neurolog Shannon Macauley z Wake Forest School of Medicine, która nie była zaangażowana w opisywane badania.

Wszystko zaczęło się w 2015 roku, gdy neurolog Li-Huei Tsai, dyrektor The Picower Institute for Learning and Memory w MIT prowadziła eksperyment, którego celem było manipulowanie aktywnością mózgu myszy za pomocą błysków białego światła.

Gdy duże grupy neuronów wspólnie oscylują, dochodzi do powstawania fal mózgowych. Tsai poddawała myszy działaniom światła o częstotliwości 40 Hz, czyli migającego 40 razy na sekundę. W odpowiedzi ich mózgach pojawiły się fale gamma o częstotliwości 40 Hz. Wówczas stało się coś niespodziewanego, o czym uczona przekonała się, gdy poddała mózgi myszy sekcji.

Zauważyła wówczas, że zmniejszyła się w nich liczba blaszek amyloidowych i splątków neurofibrylarnych. To było coś niezwykłego. Stymulowanie za pomocą błyskającego światła wywołała silną odpowiedź mikrogleju. To komórki odpornościowe mózgu, które oczyszczają go z resztek i toksyn, w tym z amyloidu. W chorobie Alzheimera ich działanie jest upośledzone, jednak wydaje się, że światło przywraca im ich zdolności, mówi uczona.

Proces oczyszczania przebiegł tylko w korze wzrokowej, gdzie mózg przetwarza informacje uzyskiwane ze światła. Uczona postanowiła sprawdzić, czy możliwe jest pobudzenie innych obszarów mózgu i do światła o częstotliwości 40 Hz dodała dźwięk podobny do kliknięć delfina, również o częstotliwości 40 Hz. Badane myszy umieszczono w pomieszczeniu, gdzie przez godzinę dziennie przez tydzień były poddawane działaniu zarówno światła jak i dźwięku. Okazało się, że liczba blaszek amyloidowych i splątków neurofibrynalnych zmniejszyła się nie tylko w korze wzrokowej i słuchowej, ale również w korze przedczołowej i w hipokampie.

To jedna z najważniejszych informacji, gdyż są to centra uczenia się i pamięci. A liczba blaszek i splątków zmniejszyła się o 40–50 procent. To imponujące, mówi Macauley.

Tsai poddała swoje myszy testom poznawczym. Miały one przyjrzeć się obiektom, które już wcześniej znały oraz takim, które widziały po raz pierwszy. Okazało się, że myszy, które nie było poddawane terapii za pomocą światła i dźwięku traktowały wcześniej widziany obiekt jak zupełnie nowy. To wskazuje na problemy z pamięcią, mówi Tsai. Z kolei myszy poddawane terapii spędziły na badaniu widzianego wcześniej obiektu o 1/3 czasu mniej niż myszy nieleczone. To niewiarygodne. Po raz pierwszy stwierdziliśmy, że nieinwazyjna stymulacja poprawiła funkcje poznawcze. Tego nie zrobił lek, przeciwciało czy cokolwiek innego. Tylko światło i dźwięk, mówi uczona.

Naukowcy nie wiedzą, dlaczego uzyskali takie wyniki. Jedna z możliwych hipotez mówi, że w mózgach chorych na alzheimera mamy do czynienia z nieregularną aktywnością neuronów. Stymulacja za pomocą regularnych sygnałów może dostrajać mózg do odpowiedniej pracy.

Uczeni nie wiedzą też, czy podobny efekt można będzie zauważyć przy innych częstotliwościach światła i dźwięku. I, co najważniejsze, nie wiedzą też, czy podobne skutki uda się uzyskać u ludzi.

Li-Huei Tsai już pracuje nad odpowiedziami na te pytanie. Wraz z kolegą Edem Boydenem założyła firmę Cognito Therapeutics i rozpoczęła testy na ludziach. Na razie zauważono, że stymulacja światłem i dźwiękiem wydaje się zwiększać ilość fal gamma u zdrowych osób i nie występują żadne skutki uboczne. Nikt się nie pochorował, nikt się na nic nie skarżył. Jednak minie dużo czasu zanim będziemy mogli mówić o ewentualnych działaniach terapeutycznych. Jeśli ta metoda działa, to pierwsze potwierdzenie otrzymamy nie wcześniej niż po pięciu latach eksperymentów, zastrzega uczona.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Amerykańscy naukowcy opracowali syntetyczne rozwiązanie, które wykazuje fototropizm, czyli podąża za kierunkiem padającego światła. Jest ono porównywane do sztucznego słonecznika. Opis systemu SunBOT (od ang. sunflower-like biomimetic omnidirectional tracker) ukazał się w periodyku Nature Technology.
      Akademicy podkreślają, że wiele sztucznych materiałów wykazuje reakcje nastyczne, co oznacza. że kierunek wygięcia nie zależy od tego, z jakiego miejsca działa bodziec. Niestety, dotąd żaden nie wykrywał i nie podążał precyzyjnie za kierunkiem bodźca, a więc nie wykazywał tropizmu.
      SunBOT powstał z połączenia 2 rodzajów nanomateriałów: światło- i termowrażliwego. Pierwszy pochłania światło i przekształca je w ciepło, drugi zaś kurczy się pod wpływem ekspozycji na ciepło.
      Zespół nadał polimerowi formę łodygi i oświetlał ją pod różnymi kątami. Okazało się, że łodyga wyginała się, nakierowując się na źródło światła. Jak tłumaczą Amerykanie, światło było absorbowane przez konkretny fragment łodygi, a powstające ciepło prowadziło do kurczenia się materiału po stronie źródła światła, przez co łodyga wyginała się w jego kierunku. Łodyga zatrzymywała się, gdy zaczynała częściowo zasłaniać promień.
      Podczas testów na łodydze umieszczano też "kwiat" będący małym panelem słonecznym. Wyniki pokazują, że urządzenie można wykorzystać do utrzymania ogniw fotowoltaicznych nakierowanych na słońce (znacząco podwyższa to ich wydajność).
       

       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Choroba Alzheimera i towarzyszący jej rozpad osobowości przerażają wielu, a dostępne leki, delikatnie mówiąc, nie grzeszą skutecznością. Dzięki pracy zespołu dr. Piotra Pięty z IChF PAN mogą powstać nowe, efektywniejsze farmaceutyki. Naukowcy pokazali, w jaki sposób wielkość cząsteczek złożonych z beta-amyloidu wpływa na sposób ich oddziaływania z błonami komórkowymi, a co za tym idzie, jak modyfikuje przebieg choroby. Kolejnym krokiem ma być testowanie w tym modelu potencjalnych leków.
      Naukowcy są m.in. po to, żeby wyjaśniać, jak funkcjonuje świat. Ich badania często wydają się abstrakcyjne, ale jak się okazuje mogą całkiem realnie pomóc wielu z nas. Tak jest z pracą zespołu dr. Piotra Pięty z IChF PAN. Wykazał on, w jaki sposób wielkość cząsteczek złożonych z beta-amyloidu – substancji uznawanej za "winowajcę" w chorobie Alzheimera – wpływa na sposób oddziaływania tych cząstek z błonami komórkowymi, a co za tym idzie, jak modyfikuje przebieg choroby.
      Naukowcy z IChF pracują na syntetycznych, modelowych błonach komórkowych, zbudowanych najprościej jak można sobie wyobrazić, ale jednocześnie podobnych do tych, jakie można znaleźć w ludzkim mózgu. Błony te składają się tylko z mieszaniny fosfolipidów (bez receptorów i innych białek błonowych) i dzięki temu umożliwiają badaczom skupienie się wyłącznie na tym, jak rozmaite cząsteczki wpływają na barierę zapewniającą trwałość komórek. Chcieliśmy się dowiedzieć, co cząsteczki beta-amyloidu tak naprawdę robią z tymi błonami, wyjaśnia dr Pięta, czy one się osadzają na ich powierzchni, czy je niszczą, czy rozpuszczają, a jeśli rozpuszczają, to dlaczego […].
      Pytań jest wiele, odpowiedzi dopiero się pojawiają. Nam w naszych badaniach udało się kontrolować wielkość oligomerów, czyli niedużych cząsteczek złożonych z kilku amyloidów, i dzięki temu mogliśmy sprawdzić, w jaki sposób ta wielkość wpływa na mechanizm ich oddziaływania z modelową błoną - mówi dr Pięta. W początkowych badaniach nad alzheimerem badano mózgi osób chorych, a w zasadzie już zmarłych na tę chorobę. W mózgach znajdowano złogi zbudowane z długich nici – fibryli - i przez wiele, wiele lat uważano, że to te fibryle są głównym czynnikiem patogennym.
      Ostatnie badania, w tym te prowadzone przez dr. Piętę, pokazują jednak coś innego. To nie długie fibryle są winowajcą, lecz raczej ich prekursory, oligomery beta-amyloidu. Amyloidy są produkowane w sposób ciągły u każdego z nas z białek błonowych; są odcinane enzymatycznie. Problem się pojawia, gdy przestają działać mechanizmy regulujące ich ilość i "wygląd". Nietoksyczne amyloidy zawierają 39-43 aminokwasy, a ich drugorzędowa struktura to alfa-helisa (kształt nieco przypominający łańcuch DNA). Te "niedobre", zmienione, przypominają raczej harmonijki. Najgorsze są takie, które mają 42 aminokwasy. Za pomocą mikroskopii sił atomowych przeprowadziliśmy dwa typy pomiarów, jeden dla cząsteczek małych, o średnicy ok. 2 nm, a drugi dla nieco większych – o średnicy ok. 5 nm - wyjaśnia naukowiec. Okazało się, że małe oligomery działają zupełnie inaczej niż duże. Duże po osadzeniu na błonie agregują, tworząc długie fibryle. Wszystkie zjawiska, które przebiegają z ich udziałem, zachodzą na powierzchni modelowej błony komórkowej i nie prowadzą do jej zniszczenia. Małe oligomery to zupełnie inna historia. One błonę niszczą. Na początku tworzą w niej różnych rozmiarów i kształtów dziury - wyjaśnia dr Pięta. Po utworzeniu dziury małe oligomery wnikają do wnętrza błony i wraz z cząsteczkami fosfolipidów błonowych tworzą globularne micele. Te micelarne kompleksy dyfundują na zewnątrz i w ten sposób usuwają fosfolipidy z błony, prowadząc do jej rozpuszczania. Mechanizm oddziaływania z błoną zmienia się wraz ze zmianą wielkości oligomeru, lecz w przypadku obu badanych przez nas amyloidów wywołuje spadek trwałości mechanicznej błony o ⁓50%. Innymi słowy, zarówno małe, jak i duże oligomery są toksyczne, choć mechanizm ich działania jest inny. Nasze badania wyjaśniają te mechanizmy i godzą sprzeczne raporty publikowane w literaturze - precyzuje badacz.
      Na razie wyjaśniamy tylko podstawowe mechanizmy - mówi dr Pięta, ale w kolejnym etapie naszych badań dołożymy do tego układu cząsteczki leków i sprawdzimy, które z nich potrafią modyfikować oddziaływanie amyloidu z błoną, a zatem, być może, i przebieg choroby. Podejmiemy badania cząsteczek, które np. mogłyby zdezaktywować beta-amyloid, przyczepiając się do niego, zanim zniszczy błonę. Rozpoczęliśmy współpracę z farmaceutami i biochemikami. Możemy im zasugerować, czy ich leki oddziałują z amyloidami, a jeżeli tak, to na jakim poziomie i jak powinny się zachowywać, żeby np. podwyższać trwałość błony komórkowej - podsumowuje naukowiec.
      Badania prowadzone w IChF PAN z pewnością przyczyniają się do lepszego zrozumienia mechanizmów prowadzących do choroby Alzheimera, a tym samym mają szansę zrewolucjonizować sposób jej leczenia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W połączeniu z limonenem, który zapewnia produktom czyszczącym i odświeżaczom powietrza cytrusowy zapach, oraz światłem opary wybielaczy prowadzą do powstawania związków szkodliwych dla ludzi i zwierząt.
      Stosowanie w pomieszczeniach roztworów wybielacza chlorowego (głównym składnikiem jest tu podchloryn sodu, NaClO) prowadzi do emisji dwóch silnych utleniaczy: gazowego kwasu podchlorawego (HOCl) i chloru (Cl2). W słabo wentylowanych środowiskach podczas sprzątania mogą one osiągać stosunkowo wysokie stężenia. Zespół Chena Wanga z Uniwersytetu w Toronto dodaje, że HOCl i Cl2 reagują z nienasyconymi związkami organicznymi na powierzchniach i w powietrzu.
      Chcąc uzupełnić luki w wiedzy, akademicy sprawdzali, czy limonen, który należy do lotnych związków organicznych najczęściej występujących we wnętrzach, i opary wybielacza mogą reagować, tworząc ostatecznie wtórne aerozole organiczne (ang. secondary organic aerosols, SOAs). Testy prowadzono w obecności światła i w ciemności.
      Warto przypomnieć, że SOAs powiązano m.in. z problemami dot. układu oddechowego.
      Autorzy artykułu z pisma Environmental Science & Technology dodawali limonen, HOCl i Cl2 do powietrza w komorze klimatycznej. Produkty reakcji badano za pomocą spektrometrii mas. W ciemności limonen i HOCl/Cl2 szybko reagowały, dając szereg lotnych związków. Kiedy zespół włączał fluorescencyjne światła albo wystawiał komorę na oddziaływanie światła słonecznego, te lotne związki wchodziły w interakcje z generowanymi przez światło rodnikami hydroksylowymi i atomami chloru, tworząc SOAs.
      Naukowcy dodają, że choć trzeba przeprowadzić dalsze pogłębione badania, bardzo możliwe, że powstające SOAs stwarzają zagrożenie dla osób zawodowo zajmujących się sprzątaniem.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Codzienne wstrzykiwanie przez 5 tygodni myszom z chorobą Alzheimera (ChA) 2 krótkich peptydów znacząco poprawia pamięć zwierząt. Terapia ogranicza także zmiany typowe dla ChA: stan zapalny mózgu oraz akumulację beta-amyloidu.
      U myszy, które przechodziły terapię, zaobserwowaliśmy słabsze nagromadzenie blaszek beta-amyloidu oraz zmniejszenie zapalenia mózgu - podkreśla prof. Jack Jhamandas z Uniwersytetu Alberty.
      Odkrycie bazuje na wcześniejszych ustaleniach odnośnie do związku AC253, który może blokować toksyczne oddziaływania beta-amyloidu. Podczas badań ustalono, że AC253 blokuje przyłączanie beta-amyloidu do pewnych receptorów komórek mózgu.
      Okazało się jednak, że choć AC253 zapobiega akumulacji beta-amyloidu, przez szybki metabolizm w krwiobiegu jest problem z jego docieraniem do mózgu. Wskutek tego, by terapia AC253 była skuteczna, potrzeba dużych ilości tego związku, co jest niepraktyczne i może zwiększyć ryzyko rozwoju odpowiedzi immunologicznej na leczenie. Teoretycznie mogłoby pomóc przekształcenie AC253 z formy wstrzykiwalnej w doustną tabletkę, ale AC253 jest zbyt złożony, by problem dało się rozwiązać w ten sposób.
      Jhamandas wpadł więc na pomysł, by "przeciąć" AC253 na dwa fragmenty i sprawdzić, czy można stworzyć dwie mniejsze nici peptydowe, które blokowałyby beta-amyloid w podobny sposób jak AC253. Podczas serii testów na genetycznie zmodyfikowanych myszach Kanadyjczycy odkryli dwa krótsze fragmenty AC253, które replikowały prewencyjne i regeneracyjne właściwości większego peptydu.
      Następnie naukowcy wykorzystali modelowanie komputerowe i sztuczną inteligencję do prac nad drobnocząsteczkowym lekiem. Zespół koncentruje się na wytworzeniu zoptymalizowanej doustnej wersji, tak by mogły się zacząć testy kliniczne na ludziach. Jhamandas podkreśla, że leki drobnocząsteczkowe są preferowane, bo taniej je wyprodukować, a poza tym mogą one być zażywane doustnie i łatwiej dostają się do mózgu z krwią.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Kraby Ocypode quadrata dysponują ukrytą bronią, za pomocą której mogą straszyć wrogów, gdy podczas walki mają zajęte szczypce. Okazuje się, że umieją wydawać dźwięki, pocierając o siebie ząbkami kutykularnymi żołądka żującego.
      To świetna rzecz, gdy drapieżnik jest blisko. Kraby mogą wyciągnąć szczypce i nadal wytwarzać [odstraszające] dźwięki [listewka strydulacyjna, którą krab zwykle wykorzystuje do wydawania dźwięków, znajduje się na propodicie większych szczypiec] - wyjaśnia Jennifer Taylor, biolog z Instytutu Oceanografii Scrippsów.
      Podczas eksperymentów O. quadrata drażniono pałeczkami, plastikową makietą kraba, zdalnie sterowaną zabawką Hexbug (pająkiem), a także żywymi i martwymi krabami. Odnotowywano każdą próbę, podczas której pojawiało się zgrzytanie; naukowcy opisywali również inne zachowania zwierząt.
      Byłam mocno zaintrygowana wydawanymi przez nie dźwiękami. Obserwowałam je, by sprawdzić, czy poruszają czymś innym niż szczypcami, ale na zewnątrz [ciała] nic się nie działo.
      Naukowcy postanowili więc zajrzeć do środka. Drobny endoskop nie okazał się dobrym rozwiązaniem, gdyż krab zmiażdżył go po włożeniu do otworu gębowego. Źródło maksymalnych drgań zlokalizowano dopiero za pomocą laserowego wibrometru dopplerowskiego. Okazało się, że jest nim żołądek żujący. Na późniejszym etapie badań wykorzystano fluoroskopię; w tym celu kraby przewieziono do centrum medycznego z odpowiednim wyposażeniem.
      Naukowcy ustalili, że boczne zęby żołądka żującego są wyposażone w grzebieniowate struktury, które pocierają o zęby środkowe. W ten sposób powstaje strydulacja o dominujących częstotliwościach poniżej 2 kHz.
      Kraby Ocypode wyewoluowały na szczypcach specjalne struktury do wytwarzania dźwięków, ale jako wsparcie wykształciły sobie jeszcze tę drugą metodę. Gdy ich szczypce są już zajęte, mogą wytwarzać dźwięki od środka [dotyczy to zarówno samców, jak i samic].
      Autorzy artykułu z pisma Proceedings of the Royal Society B opowiadają, że O. quadrata to pierwszy skorupiak, o którym wiadomo, że wykorzystuje do komunikacji ząbki kutykularne żołądka żującego. Jedynym innym znanym przypadkiem podobnego zachowania są opisane w 2017 r. na łamach periodyku Fish and Fisheries ryby, które wykorzystują do wydawania dźwięków swoje zęby gardłowe. Naukowcy dodają, że należy pamiętać, iż żołądki żujące występują u licznych skorupiaków i owadów, a różnego rodzaju "maszynerię rozcierającą" opisano także u innych zwierząt, możliwe więc, że analogiczny mechanizm produkcji dźwięku pozostaje nieodkryty również u nich...

      « powrót do artykułu
×
×
  • Create New...