Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Nie wszystkie gwiazdy Drogi Mlecznej są z nią związane siłami, które gwarantują ich pozostanie w galaktyce. Naukowcy znają już kilkadziesiąt gwiazd hiperprędkościowych, czyli takich, które poruszają się z na tyle dużą prędkością, iż w końcu wylecą poza Drogę Mleczną.

Jeszcze do niedawna jedynymi znanymi gwiazdami hiperprędkościowymi były błękitne olbrzymy, które wywodziły się z centrum galaktyki. Tam zostały przyspieszone przez czarną dziurę. Przed pięciu laty informowaliśmy o odkryciu nowej kategorii gwiazd hiperprędkościowych. To obiekty mniej więcej wielkości Słońca, które prawdopodobnie nie pochodzą z centrum galaktyki, zatem mechanizm ich przyspieszenia musiał być inny niż obecność czarnej dziury.

LAMOST-HVS to najbliższa Słońcu gwiazda hiperprędkościowa. Naukowcom z University of Michigan udało się, dzięki użyciu Teleskopu Magellana i satelity Gaia, prześledzić trasę, jaką przez ostatnie 33 miliony lat przebyła ta gwiazda. Obecnie porusza się ona z prędkością 568 km/s (2 044 800 km/h).

Jedna z teorii mówiąca o powstawaniu gwiazd hiperprędkościowych zakłada, że to pozostałości układu podwójnego, który znalazł się zbyt blisko czarnej dziury. Ta wchłonęła jedną z gwiazd, a drugą przyspieszyła do prędkości pozwalającej na wyrwanie się z objęć grawitacyjnych galaktyki.

Jednak gdy prześledzono trasę LAMOST-HVS okazało się, że w ciągu ostatnich 33 milionów lat nie zbliżyła się ona nawet do czarnej dziury. Musiało przyspieszyć ją coś innego.

Do wyrzucenia gwiazdy z galaktyki potrzebne jest niezwykle silne oddziaływanie grawitacyjne. Autorzy najnowszych badań uważają, że może ono zostać wytworzone przez gromadę gwiazd, w której znajduje się co najmniej kilkanaście gwiazd o masie co najmniej 30 mas Słońca. Jeśli LAMOST-HVS znalazła się blisko takiej gromady, mogła zostać przyspieszona do hiperprędkości. Alternatywnym rozwiązaniem byłoby spotkanie z czarną dziurę o masie około 100 mas Słońca.

Czarne dziury o tak niewielkiej masie są od dawna przedmiotem spekulacji i poszukiwań. Dotychczas przeprowadzono kilka obserwacji, które mogłyby potwierdzać ich istnienie, jednak wciąż brak jednoznacznych dowodów. Jednak uważa się, że takie czarne dziury mogą powstawać w masywnych gromadach gwiazd, takich, jaka mogła przyspieszyć LAMOST-HVS.

Naukowcy, którzy prześledzili historię LAMOST-HVS stwierdzili, że tam, gdzie gwiazda znajdowała się przed 33 milionami lat nie widać żadnej masywnej gromady gwiazd. Jednak taka gromada z łatwością mogłaby zostać przesłonięta przez pył, więc fakt, że niczego tam nie widzimy, nie oznacza, że niczego tam nie ma. Badania wykazały, że gwiazda pochodzi z Ramienia Węgielnicy, które trudno jest obserwować z Ziemi. Jeśli udałoby się zaobserwować tam gromadę gwiazd, być może zdobylibyśmy dowody na istnienie niewielkich czarnych dziur.

Tak czy inaczej, pewne jest, że LAMOST-HVS została przyspieszona przez coś innego niż Saggitarius A* w centrum galaktyki.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Czy może mi ktoś wyjaśnić w jaki sposób prześledzono trasę tej gwiazdy w ciągu poprzednich 33 mln lat? Czy to jakaś retrospektywna symulacja newtonowskiej mechaniki uwzględniająca wpływ grawitacyjny mijanych obiektów - takie gwiezdny bilard wspak czy też coś bardziej wyrafinowanego i nieobarczonego narastającym  błędem obliczeniowym?

Share this post


Link to post
Share on other sites

Nie może pochodzić z innej galaktyki? Albo nawet spoza galaktyk?

Tu oczywiście wiek wyjaśniłby sporo.

Takie gwiazdy mogłyby nabywać także prędkości w przypadku zderzeń dwóch galaktyk.

 

Share this post


Link to post
Share on other sites

Niezależnie od konkretnej trajektorii - pdp wywalenia gwiazdy z galaktyki jest raczej  kilka rzędów większe niż "przestrzelenia" galaktyki przez gwiazdę obcą.

Edited by ex nihilo

Share this post


Link to post
Share on other sites

Możliwe ale my się skupiamy na tej gwieździe bo jak rozumiem jest wyjątkowa - więc pdp niejako niejawnie odrzuciliśmy już na początku.

Jak już badamy albinosa bo nas zaciekawił to nie robimy czegoś takiego że częstość albinosów = ilość badanych albinosów/ ilość badanych =1/1 = 100 %.

Jeśli nawet na 1000 gwiazd tylko jedna jest gwiazdą z innej galaktyki ale za to porusza się nietypowo i zwraca naszą uwagę to trzeba zauważyć że ta nietypowość wyrzuca nas z obszaru statystyki.

 

Edited by thikim

Share this post


Link to post
Share on other sites

Ee nieee, bont ;)

Fakt, że przypadek jest nietypowy, nie oznacza, że nie można oceniać pdp przyczyn:
1. galaktyki zajmują bardzo mały ułamek objętości W,,
2. ogromna wiekszość gwiazd siedzi w galaktykach, ale...
3. zdarza się, że niektóre (niewiele) zostają z nich wyrzucone,
4. te wyrzucone muszą mieć odpowiednią prędkość, większą od prędkości ucieczki,
5. żeby taka szybka gwiazda została wciągnięta prez galaktykę, musi mieć trajektorię bardzo bliską galaktyci i pod odpowiednim kątem,
6. nawet kiedy założymy, że 5. będzie spełnione, to bardziej pdp jest, że zostanie w galaktyce uwięziona, niż przez nią się przebije albo znowu zostanie wyrzucona.
Do tego można wsadzić odpowiednie liczby, ale nawet bardzo ostrożna prowizorka pokazuje, że 3 + 6 jest znacznie mniej pdp niż samo 3.
 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Teleskop Webba dostarczył wielu wyjątkowych informacji, które pozwalają lepiej zrozumieć wszechświat. Były wśród nich i takie, które spowodowały, że zaczęto mówić o kryzysie w kosmologii i konieczności rewizji modeli. Jak bowiem stwierdzono, we wczesnym wszechświecie istniały galaktyki znacznie bardziej masywne, niż wynika to z obecnie stosowanych modeli. Tak masywne galaktyki nie powinny pojawić się tak krótko po Wielkim Wybuchu. Autorzy najnowszej pracy twierdzą jednak, że – przynajmniej niektóre z nich – są znacznie mniej masywne, niż się wydawało.
      Autorką najnowszych badań jest Katherine Chworowsky i jej zespół z University of Texas w Austin. Jak zauważyli badacze, galaktyki położone dalej, a więc starsze, wciąż były mniejsze od tych, położonych bliżej. Wszystko się więc zgadzało. To była wskazówka, że warto przyjrzeć się bliżej temu zjawisku.
      Naukowcy wykonali więc szczegółową analizę danych z Webba zebranych w ramach projektu Cosmic Evolution Early Release Science (CEERS) i znaleźli w nich sygnały świadczące o istnieniu szybko przemieszczającego się wodoru. Wszystko więc wskazuje na to, że galaktyki, które wydają się zbyt masywne, jak na swój wiek, zawierają czarne dziury, które w bardzo szybkim tempie wchłaniają otaczający je gaz. Ten szybko poruszający się gaz emituje tak dużo światła, że wydaje się, iż galaktyki zawierają znacznie więcej gwiazd, niż w rzeczywistości. A więc, że są znacznie bardziej masywne. Gdy badacze usunęli te „podejrzane” galaktyki z analizy, okazało się, ze cała reszta starych galaktyk mieści się w ramach przewidzianych obecnymi modelami. Tak więc standardowy model kosmologiczny nie przeżywa kryzysu. Za każdym razem, gdy mamy teorię, która tak długo wytrzymała próbę czasu, potrzebujemy przytłaczających dowodów, by ją obalić. A tak nie jest w tym przypadku, mówi profesor Steven Finkelstein, którego badania w ramach projektu CEERS dostarczyły dowodów wykorzystanych przez zespół Chworowsky.
      O ile więc naukowcom udało się rozwiązać główny problem dotyczący zbyt dużej masy galaktyk we wczesnym wszechświecie, nierozwiązana pozostała jeszcze jedna zagadka. W danych Webba widzimy bowiem niemal dwukrotnie więcej masywnych starych galaktyk, niż wynika to z modelu kosmologicznego. Może we wczesnym wszechświecie galaktyki bardziej efektywnie zmieniały gaz w gwiazdy, zastanawia się Chworowsky.
      Gwiazdy powstają, gdy gaz schłodzi się na tyle, że zapada się pod wpływem grawitacji. Dochodzi wówczas do jego kondensacji w gwiazdę. Jednak w miarę kurczenia się obłoku gazu, jego temperatura wzrasta i pojawia się ciśnienie skierowane na zewnątrz. W naszym kosmicznym sąsiedztwie istnieje równowaga obu tych sił - skierowanego do wewnątrz ciśnienia chłodnego gazu i skierowanego na zewnątrz ciśnienia zapadającej się gwiazdy, przez co gwiazdy tworzą się bardzo powoli. Być może jednak we wczesnym wszechświecie, który był bardziej gęsty od obecnego, ciśnienie skierowane na zewnątrz napotykało większy opór, więc gwiazdy tworzyły się szybciej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od 20 lat naukowcy obserwują w pobliżu Sagittariusa A* – centralnej czarnej dziury Drogi Mlecznej – tajemniczy szybko ewoluujący obiekt X7. Specjaliści zastanawiali się, czym on jest. Czy został wyciągnięty z większej pobliskiej struktury, czy jego niezwykły kształt to skutek oddziaływania wiatrów gwiazdowych, a może ukształtował go strumień cząstek z czarnej dziury? X7 ma masę 50-krotnie większa od masy Ziemi, a pełen obieg wokół czarnej dziury zajmie mu 170 lat.
      Po analizie danych z 20 lat astronomowie z UCLA Galactic Center Group oraz Keck Observatory uważają, że X7 może być chmurą pyłu i gazu wyrzuconą podczas zderzenia dwóch gwiazd. Z czasem chmura została rozciągnięta i jest powoli rozrywana przez siły pływowe czarnej dziury. Autorzy badań sądzą, że w ciągu najbliższych dekad dojdzie do rozpadu X7, a szczątki mogą zostać wciągnięte przez Sgr A*.
      Żaden obiekt w tym regionie nie podlega tak ekstremalnej ewolucji. Rozpoczęło się od kształtu przypominającego kometę i dlatego sądzono, że obiekt został ukształtowany przez wiatry gwiazdowe lub strumień cząstek z czarnej dziury. Jednak analiza danych pokazała, że obiekt stał się bardziej rozciągnięty. Coś musiało ustawić tę chmurę na takim konkretnym kursie i z tą orientacją, mówi Anna Ciurlo, główna autorka badań.
      Na podstawie trajektorii obiektu naukowcy obliczyli, że około 2036 roku chmura znajdzie się najbliżej czarnej dziury. Wówczas prawdopodobnie zacznie być przez nią wciągana i zniknie. Przewidujemy, że siły pływowe rozerwą X7 zanim w pełni obiegnie ona czarną dziurę, mówi współautor badań, profesor Mark Morris z UCLA.
      Niektóre cechy X7 są podobne do cech innych obiektów znajdujących się w pobliżu Sagittariusa A*. Te tak zwane obiekty G wyglądają jak chmury gazu, ale zachowują się jak gwiazdy. Jednak X7 podlega znacznie szybszej, bardziej dramatycznej ewolucji niż obiekty G. Znacznie bardziej przyspiesza też w kierunku czarnej dziury. Obecnie prędkość X7 wynosi około 1130 km/s.
      Badacze przypuszczają, że obiekt powstał z gazu i pyłu wyrzuconego podczas zderzenia dwóch gwiazd. Powstała w wyniku tego zderzenia gwiazda ukryta jest za powłoką pyłu oraz gazu i może odpowiadać opisowi obiektu G. A wyrzucony gaz utworzył X7, mówi Ciurlo. Uczona dodaje, że do połączeń gwiazd dochodzi często, szczególnie w pobliżu czarnych dziur.
      Ze szczegółami badań można zapoznać się na łamach The Astrophysical Journal.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie z Indii i Kanady zarejestrowali emisję radiową w paśmie 21 cm pochodzącą z wyjątkowo odległej galaktyki. Ich osiągnięcie otwiera drogę do lepszego poznania wszechświata, szczególnie jego odległych części. Daje ono np. nadzieję na znalezienie odpowiedzi na pytanie, w jaki sposób w odległych galaktykach powstają gwiazdy. Galaktyki emitują różne rodzaje sygnałów radiowych. Dotychczas mogliśmy rejestrować ten konkretny sygnał tylko z bliższych galaktyk, co ograniczało naszą wiedzę, mówi Arnab Chakraborty, doktorant na kanadyjskim McGill University.
      Emisja w paśmie 21 centymetrów pochodzi z atomów wodoru, który szczególnie interesuje naukowców. Atomowy wodór to podstawowy budulec gwiazd, ma też olbrzymi wpływ na ewolucję galaktyk. Zatem, by lepiej zrozumieć ewolucję wszechświata, naukowcy chcą zrozumieć ewolucję gazu w różnych punktach jego historii. A dzięki indyjskiemu Giant Metrewave Radio Telescope oraz wykorzystaniu techniki soczewkowania grawitacyjnego udało się zarejestrować emisję z atomów wodoru znajdujących się w bardzo odległej galaktyce.
      Dotychczas najbardziej odległą galaktyką, dla której zarejestrowano emisję w paśmie 21 cm, był obiekt oddalony od nas o 4,1 miliarda lat. Przesunięcie ku czerwieni tej galaktyki wynosiło z=0.376. Przesunięcie ku czerwieni to zjawisko polegające na wydłużaniu się fali promieniowania elektromagnetycznego w miarę oddalania się źródła emisji od obserwatora. W przypadku światła widzialnego falami o największej długości są fale barwy czerwonej, stąd nazwa zjawiska. Kanadyjsko-indyjski zespół zarejestrował teraz emisję z galaktyki, dla której z wynosi 1.29, co oznacza, że jest ona oddalona od nas o 8,8 miliarda lat świetlnych. Przechwycony sygnał został z niej wyemitowany, gdy wszechświat liczył sobie zaledwie 4,9 miliarda lat. Ze względu na gigantyczną odległość, do chwili, gdy przechwyciliśmy sygnał, emisja z pasma 21 cm przesunęła się do pasma 48 cm, mówi Chakraborty.
      Zarejestrowanie tak słabego sygnału z tak wielkiej odległości było możliwe dzięki zjawisku soczewkowania grawitacyjnego, w wyniku którego fale emitowane ze źródła są zaginane jak w soczewce przez obecność dużej masy – na przykład galaktyki – pomiędzy źródłem a obserwatorem. W tym przypadku soczewkowanie wzmocniło sygnał 30-krotnie, dzięki czemu mogliśmy zajrzeć tak głęboko w przestrzeń kosmiczną, wyjaśnia profesor Nirupam Roy. Badania wykazały, że masa wodoru atomowego w obserwowanej galaktyce jest niemal dwukrotnie większa niż masa gwiazd.
      Uzyskane wyniki dowodzą, że już za pomocą obecnie dostępnych technologii jesteśmy w stanie coraz bardziej szczegółowo badać coraz odleglejsze obszary wszechświata i śledzić jego ewolucję.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Niedawne badania podważyły przekonanie, jakoby ziemskie kontynenty uformowały się wyłącznie w wyniku procesów zachodzących wewnątrz naszej planety. Teraz dowiadujemy się o odkryciu „rytmu produkcji” skorupy ziemskiej. Badania minerałów ujawniły, że co mniej więcej 200 milionów lat dochodzi do wzmożenia zmian zachodzących w skorupie ziemskiej, a okres ten jest zbieżny z przejściem Układu Słonecznego przez ramiona Drogi Mlecznej.
      Przed kilkoma tygodniami informowaliśmy, że zdaniem naukowców z australijskiego Curtin University ziemskie kontynentu uformowały się w wyniku gigantycznych uderzeń meteorytów. Teraz dowiadujemy się, że do zwiększonego bombardowania dochodzi co około 200 milionów lat. "Układ Słoneczny przemieszcza się pomiędzy spiralnymi ramionami Drogi Mlecznej co około 200 milionów lat. Badając wiek i sygnatury izotopowe minerałów z Kratonu Pilbara w Zachodniej Australii i Kratonu Północnoatlantyckiego na Grenlandii zauważyliśmy podobny rytm tworzenia się skorupy ziemskiej, który zbiega się z okresem, w jakim Układ Słoneczny przechodzi przez obszary o największym zagęszczeniu gwiazd", mówi profesor Chris Kirkland z Curtin University.
      Układ Słoneczny krąży wokół centrum Drogi Mlecznej. Okres obiegu wynosi około 230 milionów lat i nazywany jest rokiem galaktycznym. Łatwo więc wyliczyć, że gdy ostatni raz Słońce znajdowało się w tym samym miejscu galaktyki co obecnie, po Ziemi chodziły pierwsze dinozaury.
      Raz na jakiś czas – mniej więcej do 200 milionów lat – Układ Słoneczny trafia na bardziej gęste obszary galaktyki. Wtedy oddziaływanie grawitacyjne znajdujących się w pobliżu gwiazd może destabilizować Obłok Oorta i kierować znajdujące się tam planetoidy w stronę Słońca. A część z nich trafi w Ziemię.
      Obłok Oorta to hipotetyczna – bo jej istnienia wciąż nie udowodniono – pozostałość po formowaniu się Układu Słonecznego. Ma on składać się m.in. z pyłu i planetoid. Astronomowie sądzą, że wewnętrzne krawędzie Obłoku znajdują się w odległości od 2 do 5 tysięcy jednostek astronomicznych od Słońca, a krawędzie zewnętrzne położone są w odległości od 10 do 100 tysięcy j.a. Przypomnijmy, że 1 j.a. to średnia odległość pomiędzy Słońcem a Ziemią, a najdalej wysłany przez człowieka pojazd, sonda Voyager 1, znajduje się w odległości zaledwie 157,5 j.a. od Ziemi.
      Zwiększenie częstotliwości uderzeń komet w Ziemię mogło prowadzić do spotęgowania procesów topnienia powierzchni planety i zapoczątkować formowanie się kontynentów, mówi Kirkland. Powiązanie tworzenia się kontynentów, na których obecnie żyjemy, z podróżą Układu Słonecznego przez Drogę Mleczną rzuca całkowicie nowe światło na historię tworzenia się planety i jej miejsce w przestrzeni kosmicznej, dodaje.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W 2010 roku świat astronomii obiegła sensacyjna wiadomość o odkryciu dwóch olbrzymich bąbli znajdujących się nad i pod centrum Drogi Mlecznej. Struktury zarejestrowane przez Fermi Gamma-ray Space Telescope i nazwane Bąblami Fermiego, mają wysokość po 25 000 lat świetlnych i prawdopodobnie liczą sobie zaledwie kilka milionów lat. Grupa amerykańskich naukowców opublikowała właśnie wyniki badań, z których wynika, że bąble – przynajmniej częściowo – pochodzą spoza naszej galaktyki.
      Spektroskopowe obserwacje bąbli Fermiego w zakresach fal radiowych, ultrafioletowych i optycznych pozwoliły nam na wykrycie licznych chmur gazu, znajdujących się prawdopodobnie wewnątrz bąbli. Chmury te nazywamy w tej pracy chmurami wysokich prędkości w bąblach Fermiego (FB HVC). Chociaż możliwe jest modelowanie kinematyki tych chmur z wykorzystaniem wiatru galaktycznego płynącego z centrum galaktyki, pochodzenie chmur jest nieznane, gdyż dotychczas mieliśmy niewiele informacji na temat ich zawartości metali, czytamy na łamach Nature Astronomy.
      Naukowcy wykazali, bazując na badaniach 12 FB HVC, że ich metaliczność wynosi od <20% do ok. 320% metaliczności słonecznej. To zaś każe poddać w wątpliwość przyjęte założenie, że wszystkie FB HVC pochodzą z centrum galaktyki. Uważamy, że FB HVC pochodzą zarówno z dysku, jak i z halo Drogi Mlecznej. A skoro tak, to część z tych chmur może mieć właściwości medium międzygalaktycznego, w które wchodzą bąble Fermiego, co w znaczący sposób zmienia naszą wiedzę o FB HVC, stwierdzają autorzy badań. W tym miejscu przypomnieć trzeba, że astronomowie nazywają metalami wszystkie pierwiastki cięższe od helu. Zatem miarą metaliczności określa się koncentrację pierwiastków innych niż wodór i hel względem ich koncentracji w Słońcu.
      Dlatego też naukowcy przyjrzeli się metaliczności chmur gazu w bąblach Fermiego. Jeśli jej poziom jest taki, jak otoczenia, można wnioskować, że chmury powstały z lokalnej materii. Jeśli jednak metaliczność nie pasuje do domniemanego źródła materii, trzeba wyjaśnić, skąd chmury pochodzą. Z badań wynika zaś, że przynajmniej część materii znajdującej się w bąblach Fermiego pochodzi z bardziej odległych miejsc niż centrum Drogi Mlecznej. Być może nawet z galaktycznego halo, chmury gazów otaczających galaktykę. Możliwości jest jednak wiele, a na ostateczne rozstrzygnięcie tej zagadki przyjdzie nam czekać wiele lat.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...