Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Nowa powłoka cewników naczyniowych zabija bakterie nawet przez miesiąc

Rekomendowane odpowiedzi

Poliuretanowa powłoka, która stopniowo uwalnia auranofinę, fosfinowy kompleks Au(I), pomaga przez niemal miesiąc zabijać bakterie. Podczas testów radziła sobie z metycylinoopornym gronkowcem złocistym (ang. methicillin-resistant Staphylococcus aureus, MRSA). Naukowcy uważają, że można by ją wykorzystać m.in. w cewnikach.

Chcieliśmy uzyskać powłokę, która uśmiercałaby bakterie w formie planktonicznej i zapobiegałaby kolonizacji powierzchni. Wstępne dane pokazują, że mamy coś naprawdę obiecującego - opowiada prof. Anita Shukla z Brown University.

Podczas testów poliuretanowa powłoka z auranofiną nie tylko zabijała gronkowce, ale i nie dopuszczała do powstawania biofilmów MRSA, które są szczególne oporne na leczenie.

Autorzy publikacji z Frontiers in Cellular and Infection Microbiology wyliczają, że w samych USA rokrocznie zakłada się ponad 150 mln cewników naczyniowych. Zakażenia odcewnikowe rozwijają się u 250 tys. pacjentów rocznie; do zgonu dochodzi nawet w 25% przypadków. Koszty terapii są ogromne.

Wcześniejsze próby poradzenia sobie z problemem nie były raczej udane. Powłoki antybakteryjne często tracą skuteczność po maksymalnie 2 tygodniach, bo zbyt szybko uwalniają lek. Poza tym bywa, że w powłokach wykorzystuje się tradycyjne antybiotyki, co w przypadku długotrwałego stosowania rodzi uzasadnione obawy odnośnie do rozwoju lekooporności.

W swojej powłoce Shukla i inni zastosowali jednak kompleks złota(I) - auranofinę. Światowa Organizacja Zdrowia klasyfikuje ją jako lek antyartretyczny, ale badania Eleftheriosa Mylonakisa i Beth Fuchs z Brown University wykazały, że bardzo skutecznie zabija ona MRSA i inne niebezpieczne bakterie. Poza tym auranofina działa w taki sposób, że patogenom trudno rozwinąć oporność. Dotąd nie stosowano jej w żadnej powłoce.

Podczas eksperymentów auranofinę dodawano do roztworu poliuretanu. Następnie rozpuszczalnik odparowywano, uzyskując rozciągliwą, wytrzymałą powłokę cewnika. Okazało się, że powłoka wytrzymuje bez pękania nawet 500% wydłużenie.

Testując skuteczność rozwiązania, Amerykanie umieszczali powleczone cewniki w roztworze zawierającym MRSA oraz w hodowli MRSA na płytkach agarowych. Ustalono, że powłoki hamowały wzrost gronkowców od 8 do 26 dni, zależnie od zastosowanego stężenia auranofiny. Obserwując ewentualne przejawy tworzenia biofilmu, zespół posłużył się obrazowaniem bioluminescencji. Okazało się, że nie było żadnych sygnałów tworzenia biofilmu. Poliuretan działa jak bariera otaczająca auranofinę, poprawiając długoterminową wydajność antybakteryjną i antybiofilmową.

Wstępne testy toksyczności pokazały, że powłoki nie wywierają niekorzystnego wpływu na ludzkie komórki krwi czy hepatocyty. Fakt, że obie składowe powłoki zostały zatwierdzone przez FDA, powinien przyspieszyć proces wydawania zezwoleń na testy in vivo.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Od czasu przełomowego odkrycia fal grawitacyjnych amerykańskie obserwatorium LIGO we współpracy ze swoim europejskim odpowiednikiem Virgo zarejestrowały dziesiątki zdarzeń, które wygenerowały zmarszczki czasoprzestrzeni. W przyszłości obserwatoria fal grawitacyjnych będą udoskonalane, co  pozwoli na wykrycie większej liczby fal pochodzących z głębszych regionów wszechświata, a co za tym idzie, pozwoli nam lepiej zrozumieć wszechświat i poznać jego tajemnice.
      Fale grawitacyjne powinny ściskać i rozciągać przestrzeń o 1 część na 1021, co oznacza, że cała Ziemia jest ściskana lub rozciągana o 1/100000 nanometra, czyli mniej więcej o grubość jądra atomu. W ramach eksperymentu LIGO zbudowano dwa interferometry ułożone w kształt litery L o długości 4 kilometrów każdy. Na końcach tuneli umieszczono lustra odbijające światło. W stronę luster wystrzeliwany jest promień lasera, który odbija się i powraca do detektorów. Jeśli promienie przebyły drogę o różnej długości, pomiędzy promieniami dojdzie do interferencji. Badając interferencję naukowcy są w stanie zmierzyć relatywną długość obu ramion z dokładnością do 1/10 000 szerokości protonu. To wystarczająca dokładność, by wykryć ewentualne zmiany długości obu ramion interferometrów spowodowane obecnością fal grawitacyjnych. W skład LIGO wchodzą dwa laboratoria - w stanach Luizjana i Waszyngton.
      Jednym z niezwykle ważnych elementów wpływających na czułość obu detektorów wchodzących w skład LIGO jest powłoka wspomnianych luster. Każde z nich waży 40 kilogramów, a w każdym z detektorów znajdują się 4 takie lustra. Im większy współczynnik odbicia luster, tym bardziej czuły interferometr. Jednak te same powłoki, dzięki którym lustra odbijają światło, mogą prowadzić do zwiększenia szumu tła, a to z kolei może zagłuszać sygnał z fal grawitacyjnych. A trzeba wiedzieć, że LIGO jest wrażliwy na ruch uliczny, ruchy tektoniczne czy uderzenia fal na odległym wybrzeżu. Dlatego też ciągle trwają prace nad odpowiednimi powłokami luster.
      Teraz specjaliści z California Institute of Technology (Caltech), pracujący przy LIGO, poinformowali o opracowaniu nowej powłoki wykonanej z tlenku tytanu i tlenku germanu. Za jej pomocą można będzie 2-krotnie zmniejszyć szum tła z luster, co pozwoli na 8-krotnie powiększenie przestrzeni wszechświata, z której LIGO może zbierać sygnały. Poszukujemy najdoskonalszego z obecnie dostępnych materiałów. Nasza zdolność do badania tego, co dzieje się w astronomicznej skali wszechświata jest ograniczona zjawiskami zachodzącymi w mikroskopijnej przestrzeni [powłoki luster - red.], mówi Gabriele Vajente, główna autorka badań nad nową powłoką. Mamy nadzieję, że dzięki nowej powłoce będziemy mogli zwiększyć częstotliwość wykrywania fal grawitacyjnych z obecnej raz na tydzień do raz na dzień lub częściej, dodaje dyrektor LIGO Laboratory na Caltech David Reitze.
      Nawet najmniejsze zakłócenia z otoczenia, takie jak wibracje atomów wywołane temperaturą, mogą wpłynąć na czas odbicia światła lasera od luster i zakłócić pracę interferometru.
      Najważniejsze w naszej pracy było stworzenie lepszych metod testowania różnych materiałów. Teraz możemy sprawdzić ich właściwości w około 8 godzin, a praca taka jest w pełni zautomatyzowana. Wcześniej zajmowało to około tygodnia. Dzięki temu mogliśmy szybciej testować różne połączenia różnych materiałów. Niektóre z nich zupełnie się nie sprawdzały, ale dało nam to wgląd w to, jakich właściwości powinniśmy poszukiwać, wyjaśnia Vajente. W końcu uczeni zauważyli, że odpowiednia kombinacja tlenku tytanu i tlenku germanu najlepiej redukuje wibracje wywołane zmianami temperatury.
      Lustra z nową powłoką mogą zostać zastosowane już w czasie 5. kampanii badawczej LIGO, która ruszy w połowie dekady w ramach programu Advanced LIGO Plus. Latem przyszłego roku rozpocznie się zaś 4. kampania badawcza, ostatnia z programu Advanced LIGO.
      O tym, jak ważne był opracowanie nowej powłoki mówi dyrektor Reitze. To zmieni badania prowadzone w ramach Advanced LIGO Plus. To wspaniały przykład, jak bardzo LIGO jest uzależnione od najnowocześniejszych osiągnięć optyki i badań materiałowych. To największy od 20 lat postęp w optyce wykorzystywanej w LIGO.
      Przydatność przeprowadzonych właśnie badań nie ogranicza się jedynie do wykorzystania ich wyników przy wykrywaniu fal grawitacyjnych. W przyszłości ich wyniki mogą zostać wykorzystane w telekomunikacji czy przemyśle półprzewodnikowym.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dr Bartosz Kiersztyn z Uniwersytetu Warszawskiego zajmuje się badaniem biofilmów bakteryjnych powstających na różnych powierzchniach w środowisku wodnym. Naukowiec zwrócił uwagę na fakt, że choć [...] w naturalnym środowisku wodnym tworzą się [one] bardzo szybko, to nie powstają wydajnie na powierzchni żywych glonów jednokomórkowych. Eksperymenty wykazały, że jedną z przyczyn tego zjawiska jest substancja wydzielana przez glony podczas fotooddychania. To bardzo istotne odkrycie, gdyż w biofilmach często występują patogenne bakterie, a wiele ich gatunków wytwarza i uwalnia toksyny.
      O ile w wodzie bakterie są w stanie szybko zasiedlić praktycznie każdą powierzchnię, na glonach jednokomórkowych kolonizacja prawie nie występuje. Bakterie niejako powstrzymują się przed kolonizacją żywych mikroskopijnych glonów – nie osadzają się na nich intensywnie i nie namnażają na ich powierzchniach. Obserwacje mikroskopowe oraz biochemiczne i molekularne jednoznacznie na to wskazują.
      Badania pokazały, że gradient mikrostężeń tej substancji wystarczy, by w środowisku wodnym bakterie nie osadzały się intensywnie na danej powierzchni.
      W pewnym momencie pojawił się pomysł, by opracować preparat, który zabezpieczy powierzchnie, w tym odzież i akcesoria wchodzące w kontakt z wodą (np. do uprawiania sportów wodnych), przed powstawaniem biofilmów.
      Takie rozwiązanie ma kilka plusów. Po pierwsze, wytwarzana przez glony naturalna substancja jest tania w produkcji przemysłowej. Możliwość zastosowania jej w mikrostężeniach dodatkowo sprawia, że sam preparat byłby tani w produkcji. Po drugie, naukowcy wskazują, że działanie preparatu wiązałoby się z "odstraszaniem" bakterii, a nie z ich eliminowaniem (eliminowanie groziłoby uwalnianiem z nich toksyn).
      Prowadzone dotychczas eksperymenty na materiałach, z których produkowane są m.in. pianki nurkowe i obuwie do uprawiania sportów wodnych, jednoznacznie potwierdzają, że na odzieży sportowej spryskanej roztworem z odkrytą substancją bakterie wodne osadzają się w minimalnym stopniu. Eksperymenty prowadzono m.in. w naturalnym środowisku w jeziorze Śniardwy, w specjalnie wyselekcjonowanym miejscu obfitującym w wiele szczepów bakteryjnych.
      Marta Majewska, brokerka technologii z Uniwersyteckiego Ośrodka Transferu Technologii przy Uniwersytecie Warszawskim, podkreśla, że odkrycie zostało już objęte ochroną patentową na terenie Polski. Obecnie trwają poszukiwania inwestora/partnera branżowego, który skomercjalizowałby preparat pod własną marką.
      W krajach południowych, gdzie przez większą część roku występują słoneczne i upalne dni, problemy związane z suszeniem oraz konserwacją odzieży i akcesoriów wykorzystywanych w sportach wodnych są znikome. Inaczej jest w naszych szerokościach geograficznych, gdzie nawet latem bywają pochmurne, chłodne i deszczowe dni. Powszechnym wyzwaniem związanym z mokrymi materiałami jest ich higiena oraz impregnacja – bakterie wodne, często posiadające potencjał patogenny, przyczepiają się do materiału, tworząc grube, trudne do usunięcia biofilmy. Odkryty na UW wynalazek pozwala ograniczyć to zjawisko i zabezpieczyć tkaniny.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wykorzystywana w średniowieczu mikstura - balsam oczny Balda (ang. Bald's eyesalve) - może znaleźć zastosowanie we współczesnej terapii. Naukowcy z Uniwersytetu w Warwick wykazali, że jest on skuteczny wobec szeregu patogenów Gram-dodatnich i Gram-ujemnych w hodowlach planktonowych, a także wobec 5 bakterii hodowanych w formie biofilmu.
      Bald's eyesalve opisano w staroangielskim (IX-w.) podręczniku medycznym Bald's Leechbook (zwanym także Medicinale Anglicum). Miksturę stosowano na jęczmień - torbielowatą infekcję powieki. Przyrządzano ją z czosnku, dodatkowej rośliny z rodzaju Allium (czosnek), np. cebuli lub pora, wina i krowich kwasów żółciowych. Zgodnie z recepturą, po zmieszaniu, a przed użyciem składniki muszą stać przez 9 nocy w mosiężnym naczyniu.
      Pięć lat temu naukowcy z Uniwersytetu w Nottingham wykorzystali Bald's eyesalve do walki z metycylinoopornym gronkowcem złocistym (MRSA). Opierając się na ich badaniach, zespół z Warwick ustalił, że Bald's eyesalve wykazuje obiecujące działanie antybakteryjne i tylko w niewielkim stopniu szkodzi ludzkim komórkom.
      Mikstura była skuteczna przeciw szeregowi bakterii Gram-dodatnich i Gram-ujemnych w hodowlach planktonowych. Aktywność utrzymywała się także przeciwko 5 bakteriom hodowanym w postaci biofilmu: 1) Acinetobacter baumannii, 2) Stenotrophomonas maltophilia, 3) gronkowcowi złocistemu (Staphylococcus aureus), 4) Staphylococcus epidermidis i 5) Streptococcus pyogenes.
      Bakterie te można znaleźć w biofilmach infekujących cukrzycowe owrzodzenie stopy (tutaj zaś, jak wiadomo, sporym problemem może być lekooporność).
      Jak wyjaśniają naukowcy, w skład balsamu ocznego Balda wchodzi czosnek, a ten zawiera allicynę (fitoncyd o działaniu bakteriobójczym). W ten sposób można by wyjaśnić aktywność mikstury wobec hodowli planktonowych. Sam czosnek nie wykazuje jednak aktywności wobec biofilmów, dlatego antybiofilmowego działania Bald's eyesalve nie da się przypisać pojedynczemu składnikowi. By osiągnąć pełną aktywność, konieczne jest ich połączenie.
      Wykazaliśmy, że średniowieczna mikstura przygotowywana z cebuli, wina i kwasów żółciowych może zabić całą gamę problematycznych bakterii, hodowanych zarówno w formie planktonowej, jak i biofilmu. Ponieważ mikstura nie powoduje większych uszkodzeń ludzkich komórek i nie szkodzi myszom, potencjalnie moglibyśmy opracować z tego środka bezpieczny i skuteczny lek antybakteryjny - podkreśla dr Freya Harrison.
      Większość wykorzystywanych współcześnie antybiotyków pochodzi od naturalnych substancji, ale nasze badania unaoczniają, że pod kątem terapii zakażeń związanych z biofilmem należy eksplorować nie tylko pojedyncze związki, ale i mieszaniny naturalnych produktów.
      Szczegółowe wyniki badań opublikowano w piśmie Scientific Reports.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Związek z liści pięknotki amerykańskiej (Callicarpa americana) wzmacnia aktywność antybiotyków wobec lekoopornych gronkowców. Eksperymenty laboratoryjne wykazały, że w połączeniu z oksacyliną substancja ta niweczy lekooporność metycylinoopornych gronkowców złocistych (ang. methicillin-resistant Staphylococcus aureus, MRSA).
      Pięknotka amerykańska to krzew pochodzący z południowych USA. Jest wykorzystywana w ogrodnictwie jako roślina ozdobna.
      Zdecydowaliśmy się zbadać właściwości chemiczne pięknotki amerykańskiej, ponieważ była ona ważną rośliną leczniczą Indian - podkreśla prof. Cassandra Quave z Emory University.
      Alibamu, Czoktawowie, Krikowie, Koasati czy Seminole wykorzystywali pięknotkę do różnych celów leczniczych. Liście i inne części rośliny gotowano do zastosowania w parówkach; w ten sposób zwalczano np. reumatyzm. Z gotowanych korzeni przygotowywano leki na zawroty głowy, bóle brzucha i zatrzymanie moczu. Z kory z pędów uzyskiwano natomiast miksturę na świąd.
      Poprzednie badania wykazały, że ekstrakty z liści pięknotki odstraszają komary i kleszcze. Wcześniejsze studium zespołu Quave zademonstrowało, że wyciągi z liści hamują wzrost bakterii powodujących trądzik. Tym razem Amerykanie skupili się na testowaniu ekstraktów z liści pod kątem skuteczności wobec MRSA.
      Nawet pojedyncza tkanka roślinna może zawierać setki unikatowych cząsteczek. Ich chemiczne rozdzielenie to mozolny proces. Później przychodzi kolej na testy i ich powtarzanie, by wreszcie znaleźć tę skuteczną.
      Autorzy publikacji z pisma Infectious Diseases odkryli związek, który lekko hamował wzrost MRSA. Należy on do diterpenów typu klerodanu. Ponieważ substancja tylko lekko hamowała MRSA, naukowcy wypróbowali ją w połączeniu z antybiotykami beta-laktamowymi.
      Antybiotyki beta-laktamowe są jednymi z najbezpieczniejszych i najmniej toksycznych w obecnie dostępnym arsenale leków. Niestety, MRSA rozwinęło oporność na nie.
      Testy laboratoryjne wykazały, że związek z liści pięknotki działa synergicznie z oksacyliną, znosząc lekooporność MRSA.
      Kolejnym krokiem będzie przebadanie połączenia ekstraktu i antybiotyku na modelach zwierzęcych. Jeśli wyniki pokażą, że takie połączenie zwalcza zakażenia metycylinoopornym gronkowcem złocistym, naukowcy będą syntetyzować diterpen w laboratorium, żeby poprawić jego budowę chemiczną i w ten sposób zwiększyć skuteczność terapii skojarzonej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Bakterie coraz częściej nabywają oporności na stosowane przez nas antybiotyki. Naukowcy z Uniwersytetu Południowej Danii zauważyli, że składnik konopi siewnych, kannabidiol (CBD), wspomaga działanie antybiotyków. To już kolejne badania wskazujące, że CBD może być skuteczny w walce z infekcjami bakteryjnymi.
      Problem antybiotykooporności narasta na całym świecie i naukowcy od lat alarmują, że jeśli nic się nie zmieni i nie będziemy w stanie opracowywać coraz to nowszych skuteczniejszych antybiotyków, to w przyszłości ludzie mogą zacząć umierać na choroby, które od dziesięcioleci nie stanowią dla nas zagrożenia.
      Dlatego tez trwają prace nie tylko nad nowymi antybiotykami, ale też nad składnikami wspomagającymi ich działanie. Jednym z takich składników może być kannabidiol.
      Janne Kudsk Klitgaard i Claes Sondergaard Wassmann informują na łamach Scientific Reports o wynikach swoich badań. Gdy zastosowali oni CBD wraz z antybiotykami zauważyli, że takie połączenie bardziej efektywnie zwalcza bakterie niż same antybiotyki. Potrzebowaliśmy mniej antybiotyku by zabić daną liczbę bakterii, mówią naukowcy.
      Podczas badań CBD zostało użyte do wzmocnienia działania bacytracyny przeciwko bakteriom Gram-dodatnim. Okazało się, że składnik konopii wspomaga zwalczanie metycylinoopornego gronkowca złocistego (MRSA), Enterococcus faecalis, Listeria monocytogenes oraz metycyliooporny Staphylococcus epidermidis. Kombinacja taka nie działa jednak na bakterie Gram-ujemne.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...