Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

W pobliżu Ziemi przepływa gwiezdna rzeka

Recommended Posts

Przed miliardem lat w Drodze Mlecznej powstała gromada gwiazd. Od tego czasu gwiazdy te przebyły cztery wielkie okrążenia wokół brzegów naszej galaktyki. Jej grawitacja spowodowała, że gromada rozciągnęła się w długą gwiezdną rzekę. Teraz rzeka ta przepływa w odległości zaledwie 330 lat świetlnych od Ziemi. Zdaniem astronomów, pomoże ona oszacować masę drogi Mlecznej.

Astronomowie od dawna obserwowali te gwiazdy otoczone innymi gwiazdami. Dotychczas nie zdawali sobie jednak sprawy, że należą one do jednej grupy. Dopiero dzięki trójwymiarowej mapie tworzonej przez satelitę Gaia zauważono, że gwiazdy poruszają się razem z niemal tą samą prędkością i w tym samym kierunku. Obecnie rzeka ma 1300 lat świetlnych długości i 160 lat świetlnych szerokości.

Zidentyfikowanie takiego pobliskiego strumienia jest jak natrafienie na igłę w stogu siana. Astronomowie od dawna patrzyli na ten strumień, spoglądali przez niego, a dopiero teraz dowiedzieliśmy się, że on tam jest, jest kolosalny i znajduje się niezwykle blisko Słońca, mówi João Alves z Uniwersytetu Wiedeńskiego, jeden z autorów badań.

Kosmos jest pełen takich strumieni. Jednak ich badanie nastręcza kłopotów. Trudno jest bowiem odróżnić gwiazdy należące do strumienia od innych gwiazd. Zwykle też takie strumienie znajdują się znacznie dalej od nas. Zauważenie takiej struktury tak blisko bardzo nam się przyda. Tak nieduża odległość oznacza, że gwiazdy nie świecą zbyt słabo, a ich obraz nie jest zbyt zamazany, by nie można było ich badać. To marzenie każdego astronoma, dodaje Alves.

Specjaliści mają nadzieję, że gdy dokładnie zbadają, w jaki sposób gromada gwiazd zmienia się w strumień, będą mogli określić, w jaki sposób galaktyki zyskują gwiazdy. Nowe znalezisko jest tym cenniejsze, że w tak dużych i masywnych galaktykach jak Droga Mleczna takie gromady są zwykle rozrywane i gwiazdy podążają w różnych kierunkach. Tymczasem znaleziona gwiezdna rzeka jest na tyle wielka i powiązana na tyle mocno, że pozostała nietknięta przez miliard lat, w czasie których okrążała centrum galaktyki. Nie można też wykluczyć, że należy do niej więcej gwiazd, niż wynika to ze wstępnych danych Gai.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Gdyby jeszcze gwiazdy w tym strumieniu posiadały planety ziemiopodobne, można by było sprzedawać bilety na objazd Drogi Mlecznej. Przedtem jednak wartałoby zwiększyć długość ludzkiego życia…

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Astronomowie pracujący przy Event Horizon Telescope (EHT, Teleskop Horyzontu Zdarzeń) pokazali pierwszy obraz Sagittariusa A*, czyli supermasywnej czarnej dziury znajdującej się w centrum Drogi Mlecznej. Co prawda nie jesteśmy w stanie dostrzec samej czarnej dziury, ale możemy zobrazować rozgrzany świecący gaz krążący wokół niej. EHT zarejestrował światło zakrzywione przez potężną grawitację Sgr A*, która jest 4 000 000 razy bardziej masywna od Słońca.
      Teleskop Horyzontu Zdarzeń to projekt naukowy, w którym uczestniczą radioteleskopy rozsiane po cały świecie. Celem projektu jest obserwacja Sgr A* i M87*, co ma pozwolić na weryfikację OTW, zrozumienie procesu akrecji oraz powstawania dżetów wokół czarnych dziur.
      Byliśmy zaskoczeni tym, jak dobrze rozmiary dysku otaczającego czarną dziurę zgadza się z Ogólną Teorią Względności Einsteina, mówi Geoffrey Bower z EHT. Te bezprecedensowe obserwacje znakomicie uzupełniają naszą wiedzę o tym, co dzieje się w centrum naszej galaktyki i dają nam wgląd w interakcje pomiędzy masywnymi czarnymi dziurami, a otoczeniem.
      Przed trzema laty EHT pokazał nam pierwszy w historii obraz czarnej dziury. Zobrazował wówczas M87*, znajdującą się w centrum galaktyki Messier 87.
      Teraz widzimy, że Sgr A* jest bardzo podobna do M87*, mimo tego, że jest od niej ponad tysiąc razy mniejsza i mniej masywna. Mamy dwa całkowicie różne typy galaktyk i dwie czarne dziury o zupełnie innych masach. Ale blisko krawędzi dziury te wyglądają zadziwiająco podobnie, stwierdza Sera Makroff z Uniwersytetu w Amsterdamie.
      Uzyskanie obrazu Sgr A* było znacznie trudniejsze niż M87*. Gaz w pobliżu obu tych czarnych dziur porusza się z taką samą prędkością bliską prędkości światła. Jednak o ile obiegnięcie M87* zajmuje gazowi dni lub tygodnie, to w przypadku SgrA* są to zaledwie minuty. A to oznacza, że jasność gazu i jej wzorzec szybko się zmieniają. Próba sfotografowania takiego obiektu przypomina próbę uzyskania ostrego zdjęcia szczeniaka próbującego schwytać własny ogon, wyjaśnia Chi-kwan Chan z University of Arizona.
      Naukowcy musieli więc opracować zaawansowane narzędzia, które brałyby pod uwagę ruch gazu wokół Sgr A*. O ile zatem M87* była łatwiejszym, bardziej stabilnym obiektem do zobrazowania, w przypadku którego niemal wszystkie zdjęcia wyglądały tak samo, to Sgr A* na każdym z ujęć wyglądała inaczej. Potrzeba było współpracy 300 specjalistów z 80 instytucji na całym świecie, by uzyskać pierwszy uśredniony obraz czarnej dziury w centrum Drogi Mlecznej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed dwoma laty Europejskie Obserwatorium Południowe (ESO) poinformowało o odkryciu najbliższej Ziemi czarnej dziury. Jednak najnowsze badania przeprowadzone m.in. na Uniwersytecie Katolickim w Leuven (KU Leuven) pokazały, że w układzie HR 6819 nie ma czarnej dziury. Składa się on za to z dwóch gwiazd, z których jedna pochłania drugą.
      Autorzy pierwotnych badań nad HR 6819 twierdzili, że odległy od nas o 1000 lat świetlnych układ składa się z czarnej dziury, gwiazdy obiegającaj ją zaledwie w ciągu 40 dni oraz jeszcze jednej gwiazdy, na znacznie szerszej orbicie wokół tych dwóch obiektów.
      Jednak zespół badawczy z KU Leuven, na którego czele stała doktorantka Julia Bodensteiner zaproponował właśnie inną interpretację danych. Zdaniem belgijskich naukowców HR 6819 składa się wyłącznie z dwóch gwiazd, obiegających się wciągu 40 dni. Jedna z tych gwiazd została odarta przez swojego towarzysza ze znacznej ilości materii.
      Osiągnęliśmy limit możliwych do zdobycia danych. Musieliśmy więc przyjąć inną strategię obserwacyjną, by zdecydować, który scenariusz jest bardziej możliwy, mówi Abigail Frost z KU Leuven. Zespoły z ESO i KU Leuven połączyły więc siły.
      Naukowcy zdecydowali się wykorzystać Very Large Telescope Interferometer (VLTI). VLTI to jedyne urządzenie, które mogło dostarczyć nam decydujących informacji, pozwalających na rozstrzygnięcie, jak naprawdę wygląda HR 6819, dodaje Dietrich Baade, współautor wcześniejszych badań. Scenariusze, które rozważaliśmy, były jasno opisane i można było je od siebie łatwo odróżnić za pomocą odpowiednich instrumentów, stwierdzają naukowcy.
      Oba zespoły zgadzały się co do tego, że HR 6819 składa się z dwóch źródeł światła. Trzeba było określić, czy są to czarna dziura z orbitującą wokół gwiazdą oraz odległa gwiazda czy też dwie gwiazdy na ciasnej orbicie, z których jedna została pozbawiona znacznej części materii.
      Do rozstrzygnięcia sporu zaangażowano dwa instrumenty wchodzące w skład VLTI: GRAVITY oraz MUSE. "MUSE potwierdził, że nie ma jasnego źródła światła na szerokiej orbicie, a dzięki wysokiej rozdzielczości GRAVITY byliśmy w stanie zauważyć dwa źródła światła, któe dzieli zaledwie 1/3 odległości pomiędzy Ziemią z Słońcem", stwierdzili uczeni.
      Stwierdzono zatem, że HR 6819 to układ podwójny, w którym niedawno jedna z gwiazd wyssała atmosferę gwiazdy jej towarzyszącej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Reintrodukcja bobrów, niedźwiedzi czy żubrów znacząco poprawiłaby stan światowych ekosystemów. Zamówiony przez ONZ raport wykazał, że przywrócenie dużych ssaków może pomóc w walce z ociepleniem klimatu, poprawi stan zdrowia ekosystemów i przywróci bioróżnorodność. By osiągnąć ten cel w skali świata wystarczy reintrodukcja zaledwie 20 gatunków, których historyczne zasięgi zostały dramatycznie zredukowane przez człowieka.
      Jeśli pozwolimy powrócić tym zwierzętom, to dzięki ich obecności pojawią się warunki, które z czasem spowodują, że gatunki te pojawią się na 1/4 powierzchni planety, a to z kolei rozszerzy zasięgi innych gatunków i odbuduje ekosystemy, dzięki czemu zwiększy się ich zdolność do wychwytywania i uwięzienia węgla atmosferycznego.
      Przywracanie gatunków nie jest jednak proste. Pojawia się bowiem zarówno pytanie, który z historycznych zasięgów gatunku należy uznać za pożądany. Niektórzy obawiają się też reintrodukcji dużych drapieżników, jak np. wilki, twierdząc, że niesie to ze sobą zagrożenie dla ludzi i zwierząt hodowlanych. Badania pokazują jednak, że duże drapieżniki, wpływając na roślinożerców, doprowadzają do zwiększenia zarówno pokrywy roślinnej, jak i innych gatunków. Z kolei przywracanie historycznych zasięgów roślinożerców powoduje, że roznoszą oni nasiona, pomagają w obiegu składników odżywczych oraz zmniejszają zagrożenie pożarowe poprzez wyjadanie roślinności.
      Autorzy najnowszych badań postanowili sprawdzić, gdzie przywrócenie dużych ssaków przyniosłoby największe korzyści i w jaki sposób można to osiągnąć. Okazało się, że wystarczy reintrodukcja 20 gatunków – 13 roślinożerców i 7 drapieżników – by na całej planecie odrodziła się bioróżnorodność. Te 20 gatunków to niewiele jak na 298 gatunków dużych ssaków żyjących na Ziemi.
      Badania wykazały, że obecnie jedynie w 6% obszarów zasięg dużych ssaków jest taki, jak przed 500 laty. Okazuje się również, że tylko w odniesieniu do 16% planety można stwierdzić, że znajdują się tam gatunki ssaków, na których zasięg nie mieliśmy większego wpływu.
      Naukowcy przyjrzeli się następnie poszczególnym regionom, by określić, ile pracy trzeba włożyć, by przywrócić w nich bioróżnorodnośc. Okazało się, że w większości Azji północnej, północnej Kanady oraz w częściach Ameryki Południowej i Afryki wystarczyłoby wprowadzić jedynie po kilka gatunków dużych ssaków, by przywrócić bioróżnorodność z przeszłości.
      I tak Europie przywrócenie bobra, wilka, rysia, renifera i żubra pozwoliłoby na powrót bioróżnorodności w 35 regionach, w których gatunki te zostały wytępione. Podobnie jest w Afryce, gdzie reintrodukcja hipopotama, lwa, sasebiego właściwego, likaona i geparda doprowadziłaby do dwukrotnego zwiększenia obszarów o zdrowej populacji ssaków w 50 ekoregionach. W Azji, po reintrodukcji tarpana dzikiego oraz wilka w Himalajach doszłoby do zwiększenia zasięgów zdrowych populacji o 89% w 10 ekoregionach. Z kolei w Ameryce Północnej do znacznego poprawienia stanu ekosystemów wystarczyłaby reintrodukcja niedźwiedzia brunatnego, bizona, rosomaka oraz niedźwiedzia czarnego.
      Reintrodukcja gatunków miałaby olbrzymie znaczenie nie tylko dla ekosystemu, ale i dla uratowania ich samych. Na przykład jednym ze zidentyfikowanych 20 kluczowych gatunków jest gazelka płocha, występująca na Saharze. Obecnie to gatunek krytycznie zagrożony, na świecie pozostało zaledwie około 200–300 osobników. Największym zagrożeniem dla niej są zaś działania człowieka – polowania i utrata habitatów.
      Przywrócenie wielu ze wspomnianych gatunków nie będzie jednak proste. Trzeba by np. zabronić polowań na nie i zapobiegać dalszej utracie habitatu. Ponadto wiele z ekoregionów poprzedzielanych jest granicami państwowymi, więc przywracanie gatunków i bioróżnorodności wymagałoby współpracy międzynarodowej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Historia naszej planety, to historia 4,5 miliarda lat schładzania się. Dzięki temu, że Ziemia stygnie, uformowała się jej sztywna skorupa i mogło powstać życie. Jednocześnie dzięki temu, że nie wystygła, istnieją takie procesy jak tektonika płyt i wulkanizm. Gdy wnętrze planety wystygnie, te kluczowe procesy zatrzymają się. Nie wiemy jednak, jak szybko nasza planeta się wychładza i kiedy procesy przebiegające w jej wnętrzu zatrzymają się.
      Odpowiedzią na te pytania może dać zbadanie przewodnictwa cieplnego minerałów znajdujących się na granicy między jądrem a płaszczem Ziemi. To bardzo ważne miejsce, w którym lepkie skały mają bezpośredni kontakt z płynnym zbudowanym głównie z niklu i żelaza zewnętrznym jądrem. Gradient temperatury pomiędzy jądrem zewnętrznym a płaszczem jest bardzo duży, zatem potencjalnie może tam przepływać sporo ciepła. Warstwa graniczna zbudowana jest głownie z bridgmanitu.
      Profesor Motohiko Murakami ze Szwajcarskiego Instytutu Technologicznego w Zurichuy (ETH Zurich) wraz z naukowcami z Carnegie Institute for Science opracowali złożony system pomiarowy, który pozwolił im na wykonanie w laboratorium oceny przewodnictwa cieplnego bridgmanitu w warunkach ciśnienia i temperatury, jakie panują we wnętrzu Ziemi. Wykorzystali przy tym niedawno opracowaną technikę optycznego pomiaru absorpcji diamentu podgrzewanego impulsami laserowymi.
      Dzięki tej nowej technice wykazaliśmy, że przewodnictwo cieplne bridgmanitu jest około 1,5-razy większe niż się przyjmuje, mówi profesor Murakami. To zaś wskazuje, że przepływ ciepła pomiędzy jądrem a płaszczem jest większy. A większy przepływ ciepła oznacza, że konwekcja w płaszczu zachodzi szybciej i Ziemia szybciej się ochładza. Tektonika płyt może więc w rzeczywistości spowalniać szybciej, niż się obecnie przyjmuje.
      Grupa Murakami wykazała jednocześnie, że szybsze wychładzanie się płaszcza zmieni fazy minerałów na granicy jądra i płaszcza. Schładzający się bridgmanit zmieni się w minerał, który będzie jeszcze efektywniej przewodził ciepło, zatem stygnięcie Ziemi jeszcze bardziej przyspieszy.
      Wyniki naszych badań rzucają nowe światło na ewolucję dynamiki Ziemi. Wskazują, że Ziemia, podobnie jak Merkury czy Mars, schładza się szybciej i stanie się szybciej nieaktywna, wyjaśnia Murakami.
      Trudno jednak powiedzieć, ile czasu minie zanim ruchy konwekcyjne w płaszczu ustaną. Wciąż wiemy zbyt mało, by określić, kiedy do tego dojdzie, przyznają naukowcy. Żeby się tego dowiedzieć, uczeni muszą najpierw lepiej rozpoznać w czasie i przestrzeni procesy konwekcyjne w płaszczu. Ponadto muszą wiedzieć, jak rozpad pierwiastków radioaktywnych we wnętrzu Ziemi, który jest jednym z głównych źródeł ciepła, wpływa na dynamikę procesów płaszcza.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy skupieni wokół projektu COSMIC-DANCE poinformowali o odkryciu od 70 do 170 nieznanych dotychczas planet swobodnych (FFP – free-floating planet), czyli takich, które nie są powiązane z żadną gwiazdą i samotnie wędrują przez przestrzeń kosmiczną. Odkrycia dokonali w jednym z najbliższych obszarów gwiazdotwórczych, asocjacji Skorpiona-Centaura.
      Nie znamy natury planet swobodnych, nie wiemy, dlaczego nie są powiązane grawitacyjnie z żadną gwiazdą. Być może powstają podobnie jak gwiazdy, w wyniku kolapsu grawitacyjnego niewielkich chmur gazu. A być może formują się podobnie jak inne planety w dysku protoplanetarnym krążącym wokół gwiazd, i potem w wyniku oddziaływania jakichś sił – na przykład sąsiednich planet – zostają wyrzucone ze swojego układu planetarnego. Żeby rozwiązać tajemnicę planet swobodnych potrzebujemy dużej homogenicznej próbki takich planet.
      Specjaliści z COSMIC-DANCE postanowili poszukać FFP na obszarze nieboskłonu obejmującym asocjację Skorpiona-Centaura. Asocjacje gwiazd to otwarte gromady, w których gwiazdy nie są ze sobą grawitacyjnie powiązane.
      Znalezienie planet swobodnych w gromadach gwiazd jest bardzo trudne. Potrzebna są bardzo czułe instrumenty. Gwiazdy są dość jasne i łatwe do zauważenia. Planety zaś są tysiące razy ciemniejsze, a dodatkową trudnością jest odróżnienie planeto od gwiazd i galaktyk w tle, mówi Núria Miret Roig, która wraz z zespołem zajmowała się poszukiwaniami planet. Naukowcy połączyli dwie techniki. Przeanalizowali publicznie dostępne bazy fotografii astronomicznych oraz bazy danych, w których zamieszczono informacje o ruchu, kolorze i jasności dziesiątków milionów źródeł światła. Dane takie zostały zebrane za pomocą najlepszych dostępnych teleskopów pracujących w podczerwieni i świetle widzialnym.
      Dzięki wykorzystaniu ponad 80 000 obrazów i około 100 terabajtów danych zbieranych przez 20 lat członkom COSMIC-DANCE udało się zidentyfikować do 170 możliwych planet swobodnych. Okazało się, że wszystkie one znajdują się w asocjacji Skorpiona-Centaura.
      To, jak dotąd, największa grupa planet swobodnych zaobserwowanych bezpośrednio w pojedynczej asocjacji. Niemal podwoiliśmy liczbę znanych FFP. Ich liczba zdecydowanie przekracza liczbę planet swobodnych jaką powinniśmy zaobserwować, gdyby planety takie powstawały w wyniku kolapsu małych chmur molekularnych. To zaś wskazuje, że musi istnieć inny mechanizm ich powstawania. Na podstawie dostępnej nam wiedzy o dynamice układów planetarnych stwierdzamy, że ważnym mechanizmem powstawania planet swobodnych jest ich wyrzucanie z orbit ich gwiazd, stwierdzają naukowcy.
      Jeśli zagęszczenie planet swobodnych w innych regionach gwiazdotwórczych jest podobne jak w asocjacji Skorpiona-Centaura, to w całej Drodze Mlecznej mogą istnieć miliardy planet wielkości Jowisza, które nie są powiązane z gwiazdami. Jeszcze więcej może być FFP wielkości Ziemi, gdyż w układach planetarnych występują one częściej.
       


      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...