Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Wykrywacz fal grawitacyjnych zostanie znacząco udoskonalony

Recommended Posts

Amerykańskie i brytyjskie instytucje ogłosiły, że wykrywacz fal grawitacyjnych LIGO (Laser Interferometer Gravitational-Wave Observatory), zostanie znacząco udoskonalony. Amerykańska Narodowa Fundacja Nauki przeznaczy na projekt Advanced LIGO Plus (ALIGO+) 20,4 miliona USD, a UK Research dołoży kolejnych 13,7 miliona dolarów. Niewielki wkład finansowy będzie miała też Australia.

Rozbudowa będzie dotyczyła obu miejsc, w których znajduje się LIGO, w stanach Waszyngton i Luizjana. W jej ramach urządzenie wzbogaci się m.in. w 300-metrowej długości komorę próżniową, która pozwoli manipulować właściwościami laserów wykorzystywanych w wykrywaczu oraz zmniejszyć poziom zakłóceń z tła.

LIGO składa się z dwóch interferometrów w kształcie litery L. Jeden z nich znajduje się w Hanford w stanie Waszyngton, drugi zaś w Livingston z Luizjanie. Oba interferometry mają po 4 kilometry długości. LIGO pracowało w latach 2002–2010, następnie zostało zamknięte na czas rozbudowy i ponownie ruszyło w roku 2015. Wkrótce po tym dokonało odkrycia fal grawitacyjnych. Od tamtego czasu obserwatorium przechodziło mniejsze rozbudowy, dzięki którym jego czułość zwiększono o około 50%. Dotychczas LIGO zaobserwowało 10 połączeń czarnych dziur i jedno połączenie gwiazd neutronowych. Wynikiem tych zdarzeń było pojawienie się fal grawitacyjnych.

ALIGO+ będzie jednak znacznie doskonalszym instrumentem niż dotychczas. Po rozbudowie LIGO będzie w stanie wykrywać połączenia gwiazd neutronowych z odległości 325 megaparseków, czyli około miliarda lat świetlnych od Ziemi. To znaczna różnica, gdyż zanim rozpocznie się ALIGO+ urządzenie nadal będzie udoskonalane, a bezpośrednio przed ALIGO+ osiągnie czułość pozwalającą na wykrywanie połączeń gwiazd neutronowych z odległości 173 megaparseków.

Obecnie LIGO może wykrywać połączenia czarnych dziur z odległości miliardów parseków. Do roku 2022 urządzenie powinno rejestrować jedno takie wydarzenie dziennie. Po ALIGO+ będzie rejestrowało je co kilka godzin.

Rozbudowa zwiększy nie tylko częstotliwość, ale i jakość obserwacji. Na przykład dzięki redukcji poziomu szumów naukowcy będą w stanie określić, jak czarna dziury obracały się przed połączeniem. Obecnie takich obserwacji nie jesteśmy w stanie wykonywać.

Zasada działania LIGO jest dość prosta. Na obu końcach tuneli w kształcie litery L znajdują się lustra. W punkcie centralnym tuneli mamy laser, który wysyła wiązki w kierunku luster. Wiązki odbijają się, wracają do punktu centralnego, gdzie nakładają się na siebie niwelując wzajemnie swoje oscylacje. Jeśli jednak pojawi się fala grawitacyjna, która zaburza czasoprzestrzeń, zmienia się długość tuneli, dochodzi do zmiany częstotliwości wiązek i interferencji pomiędzy nimi. Tę właśnie interferencję można wykryć.

W praktyce jednak lustra w interferometrze nie są całkowicie wolne od wpływów zewnętrznych. Co więcej, także lasery wytwarzają zakłócenia. Stopniowe udoskonalenia LIGO służą m.in. ich eliminacji. Komora próżniowa, która zostanie dodana w ramach ALIGO+ pozwoli na zredukowanie ciśnienia wywieranego na lustra oraz zmniejszenie fluktuacji fotonów. Ponadto lustra zyskają nową powłokę, która powinna czterokrotnie zmniejszyć szum termiczny.

Pierwsze prace prowadzone w ramach ALIGO+ powinny ruszyć około 2023 roku.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Astronomowie pracujący przy Event Horizon Telescope (EHT, Teleskop Horyzontu Zdarzeń) pokazali pierwszy obraz Sagittariusa A*, czyli supermasywnej czarnej dziury znajdującej się w centrum Drogi Mlecznej. Co prawda nie jesteśmy w stanie dostrzec samej czarnej dziury, ale możemy zobrazować rozgrzany świecący gaz krążący wokół niej. EHT zarejestrował światło zakrzywione przez potężną grawitację Sgr A*, która jest 4 000 000 razy bardziej masywna od Słońca.
      Teleskop Horyzontu Zdarzeń to projekt naukowy, w którym uczestniczą radioteleskopy rozsiane po cały świecie. Celem projektu jest obserwacja Sgr A* i M87*, co ma pozwolić na weryfikację OTW, zrozumienie procesu akrecji oraz powstawania dżetów wokół czarnych dziur.
      Byliśmy zaskoczeni tym, jak dobrze rozmiary dysku otaczającego czarną dziurę zgadza się z Ogólną Teorią Względności Einsteina, mówi Geoffrey Bower z EHT. Te bezprecedensowe obserwacje znakomicie uzupełniają naszą wiedzę o tym, co dzieje się w centrum naszej galaktyki i dają nam wgląd w interakcje pomiędzy masywnymi czarnymi dziurami, a otoczeniem.
      Przed trzema laty EHT pokazał nam pierwszy w historii obraz czarnej dziury. Zobrazował wówczas M87*, znajdującą się w centrum galaktyki Messier 87.
      Teraz widzimy, że Sgr A* jest bardzo podobna do M87*, mimo tego, że jest od niej ponad tysiąc razy mniejsza i mniej masywna. Mamy dwa całkowicie różne typy galaktyk i dwie czarne dziury o zupełnie innych masach. Ale blisko krawędzi dziury te wyglądają zadziwiająco podobnie, stwierdza Sera Makroff z Uniwersytetu w Amsterdamie.
      Uzyskanie obrazu Sgr A* było znacznie trudniejsze niż M87*. Gaz w pobliżu obu tych czarnych dziur porusza się z taką samą prędkością bliską prędkości światła. Jednak o ile obiegnięcie M87* zajmuje gazowi dni lub tygodnie, to w przypadku SgrA* są to zaledwie minuty. A to oznacza, że jasność gazu i jej wzorzec szybko się zmieniają. Próba sfotografowania takiego obiektu przypomina próbę uzyskania ostrego zdjęcia szczeniaka próbującego schwytać własny ogon, wyjaśnia Chi-kwan Chan z University of Arizona.
      Naukowcy musieli więc opracować zaawansowane narzędzia, które brałyby pod uwagę ruch gazu wokół Sgr A*. O ile zatem M87* była łatwiejszym, bardziej stabilnym obiektem do zobrazowania, w przypadku którego niemal wszystkie zdjęcia wyglądały tak samo, to Sgr A* na każdym z ujęć wyglądała inaczej. Potrzeba było współpracy 300 specjalistów z 80 instytucji na całym świecie, by uzyskać pierwszy uśredniony obraz czarnej dziury w centrum Drogi Mlecznej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Profesor Bożena Czerny z Centrum Fizyki Teoretycznej PAN jest pierwszą Polką uhonorowaną Nagrodą im. Lodewijka Woltjera przez Europejskie Towarzystwo Astronomiczne. Polska uczona została nagrodzona za wkład w zrozumienie fizyki dysków akrecyjnych i obszarów powstawania szerokich linii emisyjnych w aktywnych jądrach galaktyk, a także za prace nad kwazarami i ciemną energią.
      Profesor Czerny ukończyła fizykę teoretyczną na Uniwersytecie Warszawskim. W 1978 roku rozpoczęła pracę w Centrum Astronomicznym im. Mikołaja Kopernika PAN. W 1984 roku uzyskała tytuł doktora. Jej rozprawa dotyczyła dysków akrecyjnych. W 2015 roku rozpoczęła pracę w Centrum Fizyki Teoretycznej PAN. W latach 2012–2020 była wydawcą naukowym The Astrophysical Journal Amerykańskiego Towarzystwa Astronomicznego, w 2019 roku Czeska Akademia Nauk uhonorowała panią profesor Medalem Zasługi im. Ernsta Macha.
      Zainteresowania naukowe profesor Czerny dotyczą głównie modelowania procesów zachodzących w pobliżu czarnych dziur w centrach aktywnych galaktyk, w układach podwójnych oraz porównywania modeli z danymi obserwacyjnymi. Już na początku swojej kariery naukowej zaczęła badać fizyczne podstawy ruchu materii z wewnętrznych obszarów dysku akrecyjnego w kierunku horyzontu zdarzeń. Jest jednym z pionierów badań nad zmiennością promieniowania rentgenowskiego w aktywnych centrach galaktyk i pionowym ułożeniem warstw w dyskach akrecyjnych.
      We współpracy z naukowcami z Uniwersytetów Cambridge, Harvarda i Leicester badała emisję z dysków akrecyjnych w aktywnych jądrach galaktyk. Badała niestabilności dysków akrecyjnych, a w 2011 roku stworzyła, bazujący na ciśnieniu promieniowania działającym na pył nowy model struktury obszarów powstawania szerokich linii emisyjnych (FRADO – Failed Radiatively Accelerated Dusty Outflow). W ostatnim czasie uczona skupia się na pomiarach światła w echo odległych kwazarów, by w ten sposób dokładniej określić odległość do nich.
      Cieszę się, że jako Polka mogę mieć tak duży wkład w rozwój fizyki i astronomii. Każda publikacja, nowe odkrycie i zdobywane nagrody motywują do dalszego działania. Wierzę w to, że swoją aktywnością otwieram furtkę do lepszego zrozumienia wszechświata, mówi profesor Czerny.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed dwoma laty Europejskie Obserwatorium Południowe (ESO) poinformowało o odkryciu najbliższej Ziemi czarnej dziury. Jednak najnowsze badania przeprowadzone m.in. na Uniwersytecie Katolickim w Leuven (KU Leuven) pokazały, że w układzie HR 6819 nie ma czarnej dziury. Składa się on za to z dwóch gwiazd, z których jedna pochłania drugą.
      Autorzy pierwotnych badań nad HR 6819 twierdzili, że odległy od nas o 1000 lat świetlnych układ składa się z czarnej dziury, gwiazdy obiegającaj ją zaledwie w ciągu 40 dni oraz jeszcze jednej gwiazdy, na znacznie szerszej orbicie wokół tych dwóch obiektów.
      Jednak zespół badawczy z KU Leuven, na którego czele stała doktorantka Julia Bodensteiner zaproponował właśnie inną interpretację danych. Zdaniem belgijskich naukowców HR 6819 składa się wyłącznie z dwóch gwiazd, obiegających się wciągu 40 dni. Jedna z tych gwiazd została odarta przez swojego towarzysza ze znacznej ilości materii.
      Osiągnęliśmy limit możliwych do zdobycia danych. Musieliśmy więc przyjąć inną strategię obserwacyjną, by zdecydować, który scenariusz jest bardziej możliwy, mówi Abigail Frost z KU Leuven. Zespoły z ESO i KU Leuven połączyły więc siły.
      Naukowcy zdecydowali się wykorzystać Very Large Telescope Interferometer (VLTI). VLTI to jedyne urządzenie, które mogło dostarczyć nam decydujących informacji, pozwalających na rozstrzygnięcie, jak naprawdę wygląda HR 6819, dodaje Dietrich Baade, współautor wcześniejszych badań. Scenariusze, które rozważaliśmy, były jasno opisane i można było je od siebie łatwo odróżnić za pomocą odpowiednich instrumentów, stwierdzają naukowcy.
      Oba zespoły zgadzały się co do tego, że HR 6819 składa się z dwóch źródeł światła. Trzeba było określić, czy są to czarna dziura z orbitującą wokół gwiazdą oraz odległa gwiazda czy też dwie gwiazdy na ciasnej orbicie, z których jedna została pozbawiona znacznej części materii.
      Do rozstrzygnięcia sporu zaangażowano dwa instrumenty wchodzące w skład VLTI: GRAVITY oraz MUSE. "MUSE potwierdził, że nie ma jasnego źródła światła na szerokiej orbicie, a dzięki wysokiej rozdzielczości GRAVITY byliśmy w stanie zauważyć dwa źródła światła, któe dzieli zaledwie 1/3 odległości pomiędzy Ziemią z Słońcem", stwierdzili uczeni.
      Stwierdzono zatem, że HR 6819 to układ podwójny, w którym niedawno jedna z gwiazd wyssała atmosferę gwiazdy jej towarzyszącej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W odległości 9 miliardów lat świetlnych od Ziemi dwie supermasywne czarne dziury okrążają się co 2 lata. Masa każdej z nich jest setki milionów razy większa niż masa Słońca, a dzieli je odległość zaledwie 50 razy większa niż dystans pomiędzy Plutonem z Słońcem. Gdy za 10 000 lat obie czarne dziury się połączą, dojdzie do gigantycznej kolizji, która wstrząśnie czasoprzestrzenią i wyśle przez wszechświat fale grawitacyjne.
      Czarne dziury zostały odkryte przez astronomów z California Institute of Technology (Caltech), którzy obserwowali odległy kwazar. Kwazary to aktywne galaktyki o olbrzymiej mocy promieniowania. Promieniowanie to pochodzi z dysku akrecyjnego masywnej czarnej dziury znajdującej się w centrum galaktyki. Jest ono tak intensywne, że cała galaktyka wygląda jak gwiazda. Uczeni przyglądali się kwazarowi PKS 2131-021. Już wcześniej wiedziano, że kwazary mogą posiadać dwie supermasywne czarne dziury, ale zdobycie dowodu na to było niezwykle trudne.
      Zespół z Caltechu informuje właśnie na łamach The Astrophysical Journal Letters, że PKS 2131-021 to drugi znany nam obiekt, w którym mogą istnieć dwie supermasywne czarne dziury będące właśnie w trakcie łączenia się. Pierwszym takim obiektem jest kwazar OJ 287, w którym czarne dziury okrążają się w ciągu 9 lat. W przypadku PKS 2131-021 okres ten wynosi zaledwie 2 lata.
      Dowody na istnienie dwóch czarnych dziur w badanym kwazarze pochodzą z obserwacji radiowych prowadzonych przez 45 lat. Pięć różnych obserwatoriów astronomicznych zarejestrowało zmiany jasności kwazaru w paśmie radiowym. Są one powodowane zmianami pozycji względem ziemi potężnego dżetu wydobywającego się z jednej z czarnych dziur. A do zmian tej pozycji dochodzi, gdyż w kwazarze są dwie czarne dziury krążące wokół siebie. Wykres zmian jasności to niemal idealna sinusoida. Niczego wcześniej nie zaobserwowano w żadnym z kwazarów.
      Gdy zdaliśmy sobie sprawę, że szczyty i doliny wykresu dla danych z nowych obserwacji są takie, jak szczyty i doliny wykresu danych z lat 1975–1983, wiedzieliśmy, że dzieje się tam coś szczególnego, mówi główna autorka badań, studentka Sandra O'Neill. Zmiany w PKS 2131 nie są po prostu okresowe. To zmiany sinusoidalne. A to oznacza, że występuje tam wzór, który możemy śledzić w czasie, mówi mentor O'Neill profesor Tony Readhead.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Członkowie międzynarodowego zespołu astronomów, w skład którego wchodzą naukowcy z Uniwersytetu Warszawskiego, informują na łamach arXiv o odkryciu czarnej dziury wielkości gwiazdowej, która samotnie przemierza wszechświat. Obiekt znajduje się w odległości 5000 lat świetlnych od Ziemi, w gwiazdozbiorze Strzelca.
      Już wcześniej w Drodze Mlecznej odkrywano czarne dziury o masach gwiazdowych, jednak zawsze odkryć dokonywano dlatego, że widoczne było ich oddziaływanie na towarzyszące im gwiazdy – czemu towarzyszyła emisja w zakresie promieniowania rentgenowskiego – lub też rejestrowano fale grawitacyjne powstające podczas zderzeń, w których czarne dziury brały udział. Teraz, po raz pierwszy udało się zarejestrować izolowaną czarną dziurę o masie podobnej do masy gwiazdy.
      Czarną dziurę odkryto dzięki zastosowaniu astrometrii zjawisk mikrosoczewkowania grawitacyjnego. W technice tej bada się przesunięcia astrometryczne obiektu wywołującego mikrosoczewkowanie.
      Naukowcy od wielu lat bacznie obserwują gwiazdy w tle Drogi Mlecznej. W 2011 roku teleskopy w Nowej Zelandii i Chile zarejestrowały interesujący przypadek mikrosoczewkowania. Zjawisko było na tyle intrygujące, że postanowiono przyjrzeć mu się bliżej za pomocą Teleskopu Hubble'a. Astronomowie badali, jak zmienia się światło gwiazd w tle obiektu powodującego mikrosoczewkowanie i próbowali określić, co to za obiekt.
      Obserwowaliśmy ten obiekt przez sześć lat, a okresy obserwacji wynosiły od 6 do 12 miesięcy w danym roku, mówi główny autor badań Kailash Sahu ze Space Telescope Science Institute w Baltimore. Hubble pozwolił na pomiary pozornych zmian pozycji gwiazd w tle z dokładnością do 0,2 milisekundy kątowej. To około 10 milionów razy mniej niż widoczna średnica księżyca w pełni, wyjaśnia Martin Dominik z brytyjskiego University of St. Andrews.
      Zebrane dane wskazują, że obserwowany obiekt ma masę około 7-krotnie większą od masy Słońca. Zdaniem naukowców nie może być to gwiazda ciągu głównego lub grupa gwiazd, gdyż zaobserwowano by promieniowanie. Jest z kolei zbyt masywny jak na białego karła czy podwójną gwiazdę neutronową.
      Obiekt porusza się też z zadziwiającą prędkością 162 000 km/h. Żadna z gwiazd w jego otoczeniu nie porusza się tak szybko. Dlatego też sądzimy, że tę czarną dziurę przyspieszyła eksplozja supernowej, w wyniku której powstała, dodaje Sahu.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...