Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Mikrobiom odpowiada za produkcję znaczącej części toksycznych metabolitów leków

Rekomendowane odpowiedzi

Niektórzy ludzie cierpią z powodu toksycznych skutków ubocznych leków, które innym pomagały. Naukowcy z Uniwersytetu Yale znaleźli winnego - mikrobiom.

Na łamach Science ukazał się właśnie ich artykuł, w którym opisują szczegóły przekształcania 3 leków w szkodliwe związki.

Jeśli zrozumiemy wkład mikroflory jelitowej w metabolizm leków, będziemy mogli zdecydować, co podać pacjentowi. Ewentualnie będziemy mogli zmienić mikrobiom, tak by poprawić reakcję chorego - opowiada dr Michael Zimmermann.

Na początku Zimmermann, Andrew Goodman, Maria Zimmermann-Kogadeeva i Rebekka Wegmann (obecnie doktorantka na Politechnice Federalnej w Zurychu) badali lek antywirusowy BRV (brywudynę, która jest silnym inhibitorem replikacji wirusa ospy wietrznej i półpaśca). Zespół ustalił, w jaki sposób mikrobiom przekształca lek w szkodliwy hepatotoksyczny związek - bromowinylouracyl (BVU).

Amerykanie zademonstrowali, że BRV jest rozkładany do BVU zarówno przez enzymy ssacze, jak i mikrobiologiczne. Na dalszym etapie brywudynę aplikowano myszom z bakteriami, które nie dysponowały enzymami potrzebnymi do rozkładu BRV do BVU; zabieg ten pozwalał ustalić wkład bakterii w poziom BVU w surowicy.

Koniec końców powstał model farmakokinetyczny, który trafnie przewiduje osoczową ekspozycję na BVU i ocenia wkład gospodarza i mikrobiomu w farmakokinetykę. Symulacje ujawniły, w jaki sposób parametry leku, gospodarza i mikrobiomu wpływają na metabolizm.

By ustalić, czy to podejście odnosi się do innych metabolizowanych przez mikrobiom leków, obliczano wkłady mikrobiologiczny i gospodarza w metabolizm 1) leku psychotropowego klonazepamu oraz 2) sorywudyny, leku strukturalnie pokrewnego do BRV.

Okazało się, że mikroflora jelit odpowiadała za produkcję 20-80% krążących toksycznych metabolitów 3 badanych leków.

Nowy model może pomóc w identyfikacji osób potencjalnie zagrożonych najsilniejszymi skutkami ubocznymi leków. Z drugiej strony przyda się naukowcom do opracowywania metod ich minimalizowania.

 


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Gość

Odpowiedzialny nie jest mikrobiom tylko skład leku... należy zmienic sklad leku aby nie powstawaly szkodliwe metabolity.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Florida Atlantic University zajęli się noszonymi na nadgarstkach paskami o różnych teksturach, by zbadać, czy mogą się na nich znajdować potencjalnie szkodliwe/patogenne bakterie. Naukowcy podkreślają, że choć opaski (do których mocowane są np. zegarki czy krokomierze) noszone są codziennie, ludzie zapominają o ich czyszczeniu lub zwyczajnie ignorują taką potrzebę.
      W ramach studium Amerykanie testowali opaski z plastiku, gumy, tkaniny, skóry i metalu (srebra i złota). Chcieli sprawdzić, czy istnieje korelacja między rodzajem materiału a występowaniem bakterii. Naukowcy przyglądali się czystości różnych rodzajów opasek. Starali się też zidentyfikować najlepsze protokoły ich prawidłowej dezynfekcji.
      Oznaczano liczebność bakterii, typy bakterii oraz ich rozkład na powierzchni opaski. Zespół dr Nwadiuto Esiobu oceniał też skuteczność 3 roztworów odkażających: 70% etanolu, lizolu (Lysol™ Disinfectant Spray) oraz octu jabłkowego.
      Niemal na wszystkich (95%) paskach znaleziono bakterie, ale najgorzej wypadły paski plastikowe i gumowe. Natomiast metalowe, szczególnie zawierające złoto i srebro, miały na swojej powierzchni niewiele bakterii lub nie miały ich prawie wcale. Plastik i guma są prawdopodobnie lepszym siedliskiem dla bakterii, gdyż są porowate i wykazują się elektrostatycznością, co przyciąga bakterie i ułatwia kolonizację. Najlepszym wskaźnikiem pozwalającym na przewidzenie stopnia kolonizacji przez bakterię była struktura powierzchni paska oraz aktywność jego użytkownika. Nie zauważono za to różnicy pomiędzy paskami używanymi przez mężczyzn i kobiety jeśli chodzi o rodzaje bakterii i częstotliwość ich występowania.
      Znalezione na paskach mikroorganizmy to standardowo występujące na skórze rodzaje Staphylococcus i Pseudomonas oraz obecny w jelitach rodzaj Escherichia, szczególnie E. coli. Staphylococcus znaleziono na 85% pasków, Pseudomonas na 30%, a E. coli występowała na 60%. Najwięcej Staphylococcus przebywało na paskach osób, które korzystały z sal gimnastycznych.
      Liczba bakterii oraz zidentyfikowane przez nas gatunki pokazują, że należy regularnie czyścić paski urządzeń noszonych na nadgarstku. Nawet niewielka liczba patogenów z tych rodzin może powodować poważne choroby. O czyszczenie pasków powinni dbać szczególnie pracownicy służby zdrowia, gdyż zidentyfikowane przez nas mikroorganizmy są bardzo niebezpieczne dla osób o osłabionym układzie odpornościowym, a ludzi ci z takimi właśnie osobami się stykają, zauważa doktor Nwadiuto Esiobu.
      Spośród trzech testowanych środków odkażających największą skutecznością wykazały się lizol i 70-procentowy etanol. Niezależnie od materiału paska po 30-sekundowej ekspozycji zabijały 99,9% bakterii. Ocet jabłkowy potrzebował 2 minut, by liczba bakterii zaczęła spadać.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dokonany w ostatniej dekadzie postęp w dziedzinie rekonstrukcji i sekwencjonowania starego DNA daje nam wgląd w niedostępne wcześniej aspekty przeszłości. Ostatnim niezwykłym osiągnięciem w tej dziedzinie jest badanie mikrobiomu jamy ustnej prehistorycznych ludzi. Mikrobiomu, który wskutek radykalnej zmiany diety i stosowania antybiotyków jest u współczesnych ludzi zupełnie inny od tego, z którym ewoluowaliśmy przez dziesiątki i setki tysięcy lat. Opisanie prehistorycznego mikrobiomu pozwoli nam nie tylko lepiej poznać warunki, w jakich żyli nasi przodkowie ale może też przyczynić się do opracowania nowych metod leczenia. Dzięki rekonstrukcji dawnego mikrobiomu możemy dowiedzieć się, jakie funkcje odgrywał on w przeszłości i co w międzyczasie straciliśmy.
      Naukowcy z Niemiec, USA, Hiszpanii i Meksyku zbadali kamień nazębny 12 neandertalczyków i 52 ludzi współczesnych, którzy żyli w okresie od 100 000 lat temu do czasów obecnych. Dzięki słabej higienie jamy ustnej w odkładającym się kamieniu nazębnym zachował się interesujący naukowców materiał. Jego zbadanie nie było łatwe. Współautorka badań, Christina Warinner i jej zespół przez niemal 3 lata dostosowywali dostępne narzędzia do sekwencjonowania DNA oraz programy komputerowe do pracy z fragmentami, jakie udaje się pozyskać z prehistorycznego materiału. Ich praca przypominała układanie wymieszanego stosu puzzli, na który składały się puzzle z różnych zestawów, a część z nich całkowicie zniknęła. Naukowcom zależało na sukcesie, gdyż wiedzieli, że w tym stosie znajdą nieznane dotychczas informacje. Jesteśmy ograniczeni do badań obecnie istniejących bakterii. Całkowicie ignorujemy DNA z organizmów nieznanych lub takich, które prawdopodobnie wyginęły, mówi Warinner. W końcu udało się pozyskać fragmenty kodu genetyczne ze szczątków 46 badanych ludzi.
      Kamień nazębny to idealne miejsce do poszukiwania dawnych mikroorganizmów. Bez regularnego mycia zębów zostają w nim bowiem uwięzione resztki pożywienia i innej materii organicznej. Zostają one zamknięte w kamieniu i są w ten sposób chronione przed zanieczyszczeniem, gdy ciało się rozkłada. To idealne miejsce do poszukiwania niezanieczyszczonych próbek.
      Badacze znaleźli w ustach badanych osób bakterie z rodzaju Chlorobium. Ich współcześni kuzyni korzystają z fotosyntezy i żyją w stojącej wodzie w warunkach beztlenowych. Nie spotyka się ich w ludzkich ustach. Wydaje się, że zniknęły stamtąd przed 10 000 lat. Naukowcy przypuszczają, że Chlorobium albo trafiło do mikrobiomu ust paleolitycznych ludzi wraz z pitą przez nich wodą z jaskiń lub też było stałym elementem mikrobiomu przynajmniej niektórych z nich.
      Jednak sama rekonstrukcja materiału genetycznego bakterii to nie wszystko. Na podstawie DNA możemy odgadywać, z jakich białek zbudowana była bakteria, ale już niekoniecznie to, jakie molekuły były przez te białka wytwarzane. Dlatego też naukowcy wyposażyli Pseudomonas protegens w parę prehistorycznych genów z kamienia nazębnego. Okazało się, że geny te doprowadziły do wytwarzania furanów przez P. protegens. Współczesne bakterie wykorzystują furany do przesyłania sygnałów, a badania sugerują, że podobnie robiły bakterie prehistoryczne.
      Mimo że naukowcom udało się nakłonić współczesne bakterie do ekspresji genów bakterii prehistorycznych, to nie ma tutaj mowy o ożywianiu bakterii sprzed tysiącleci. Nie ożywiliśmy tych mikroorganizmów, zidentyfikowaliśmy za to kluczowe geny, które służyły im do wytwarzania interesujących nas molekuł, wyjaśnia Warinner.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed dziewięciu laty profesor Chris Greening i jego koledzy z Monash University zainteresowali się Mycobacterium smegmatis. Ta niezwykła bakteria może przetrwać wiele lat bez dostępu do organicznych źródeł pożywienia. Ku zdumieniu australijskich naukowców okazało się, że M. smegmatis pobiera wodór z atmosfery i wykorzystuje go produkcji energii. Teraz naukowcom udało się wyekstrahować enzym odpowiedzialny za cały proces. Mają nadzieję, że uda się go wykorzystać do produkcji tanich wydajnych ogniw paliwowych.
      Enzym hydrogenazy, zwany Huc, ma tak wysokie powinowactwo do wodoru, że utlenia wodór atmosferyczny, mówi Greening. Huc jest niezwykle wydajny. W przeciwieństwie do innych znanych enzymów i katalizatorów korzysta z wodoru poniżej poziomu atmosferycznego, który stanowi 0,00005% powietrza, którym oddychamy – dodaje uczony. Od pewnego czasu wiedzieliśmy, że bakterie mogą wykorzystywać wodór atmosferyczny jako źródło energii. Jednak do teraz nie wiedzieliśmy, jak to robią – stwierdza.
      Bliższe badania ujawniły, że Huc niezwykle wydajnie zmienia minimalne ilości H2 w prąd elektryczny, jednocześnie zaś jest niewrażliwy na oddziaływanie tlenu, który jest zwykle bardzo szkodliwy dla katalizatorów. Co więcej Huc jest odporny na wysokie temperatury. Nawet w temperaturze 80 stopni Celsjusza zachowuje swoje właściwości.
      Bakterie wytwarzające Huc powszechnie występują w środowisku naturalnym. Odkryliśmy mechanizm, który pozwala bakteriom „żywić się powietrzem”. To niezwykle ważny proces, gdyż w ten sposób bakterie regulują poziom wodoru w atmosferze, pomagają utrzymać żyzność i zróżnicowanie gleb oraz oceanów, dodaje Greening.
      Obecnie naukowcy pracują nad skalowaniem produkcji Huc. Chcą uzyskać większe ilości enzymu, by go lepiej przebadać, zrozumieć oraz opracować metody jego wykorzystania w procesach przemysłowych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po ponad 20 latach pracy naukowcy odszyfrowali pełną strukturę kluczowej molekuły sygnałowej. Otwiera to drogę do opracowania nowych i lepszych leków na niektóre rodzaje nowotworów. Nad poznaniem pełnej struktury kinaz janusowych pracuje wiele zespołów na całym świecie. Udało się to grupie Christophera Garcii z Howard Hughes Medical Institute.
      Garcia i jego koledzy pracowali nad tym zadaniem od ponad 2 dekad. Pod koniec ubiegłego roku spod ich mikroskopów elektronowych zaczęły wyłaniać się wyraźne obrazy poszczególnych elementów kinazy. A 8 grudnia doktor Naotaka Tsutsumi i magister Caleb Glassman wysłali mu e-mail z załączonym zdjęciem, na którym było wyraźnie widać molekułę przyłączoną do receptora. Garcia, który brał właśnie udział w spotkaniu, od razu pobiegł do laboratorium. Chciałem, byśmy szybko dokończyli prace, mówi.
      Trójka naukowców pracowała od tej pory bez wytchnienia. To był prawdziwy wyścig pomiędzy wieloma świetnymi ośrodkami akademickimi na całym świecie. A my pędziliśmy do mety, stwierdził. W końcu 26 grudnia uczeni wysłali szczegółowy opis swojej pracy do redakcji Science. Wczoraj ukazał się artykuł i świat mógł zapoznać się z tak długo poszukiwaną dokładną strukturą molekuły.
      Zespół Garcii nie tylko określił dokładną strukturę kinazy janusowej, ale również opisał mechanizm jej działania. To jedna z kluczowych kwestii biologii, mówi John O'shea immunolog z National Institutes of Health, który jest współautorem jednego z pierwszych leków blokujących kinazy janusowe.
      Kinazy janusowe to jedne z podstawowych molekuł sygnałowych. Zbierają one sygnały spoza komórki i przekazują je do komórki. Naukowcy od wielu lat wiedzą, że nieprawidłowo działające kinazy janusowe są przyczyną różnych chorób. A niektóre mutacje prowadzące do nieprawidłowego działania tych kinaz znacząco upośledzają zdolność organizmu do zwalczania infekcji. Nieprawidłowo działające kinazy janusowe przyczyniają się do rozwoju nowotworów krwi, jak białaczka, oraz chorób autoimmunologicznych.
      Dotychczas znaliśmy częściową strukturę tych kinaz, co pozwoliło na opracowanie inhibitorów kinaz, pomagających w leczeniu nowotworów czy artretyzmu. Jednak leki te powstały bez znajomości pełnej struktury kinaz i ich działania. Dlatego też większość współcześnie stosowanych leków nakierowanych na kinazy janusowe to broń obosieczna. Pomagają w leczeniu wielu chorób, od egzemy po COVID-19, ale mogą mieć też wiele skutków ubocznych.
      Garcia po raz pierwszy próbował szczegółowo zobrazować kinazy janusowe w 1995 roku. Jednak to naprawdę trudne zadanie. Kinazy bardzo trudno jest uzyskać w warunkach laboratoryjnych. Jakby tego było mało, nie tworzą one łatwo kryształów, a kryształy są potrzebne, by za pomocą krystalografii rentgenowskiej określić strukturę badanej molekuły.
      Przez lata uczeni mogli więc obserwować małe fragmenty kinaz, które nie składały się w całość. Przełom nastąpił przed kilku laty, wraz z udoskonaleniem kriomikroskopii elektronowej. Drugim istotnym elementem odniesionego sukcesu była decyzja Garcii i skupieniu się na badaniu mysiej kinazy janusowej, w miejsce mniej stabilnej kinazy ludzkiej. Dodatkowo naukowcy wprowadzili do mysiej kinazy mutację powodującą nowotwór, co dodatkowo ustabilizowało molekułę.
      Dzięki temu uczeni byli w końcu w stanie dokładnie opisać strukturę kinazy JAK1 oraz mechanizm jej działań. Garcia ma nadzieję, że dzięki temu uda się w niedalekiej przyszłości opracować leki, które będą brały na cel wyłącznie nieprawidłowo działające kinazy janusowe, co zmniejszy liczbę skutków ubocznych, gdyż kinazy prawidłowo działające będą mogły niezakłócenie pracować.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Nowy nanomateriał może przechwytywać „zabłąkane” molekuły chemioterapeutyków, zanim zaszkodzą one zdrowym tkankom. Daje on więc nadzieję na zmniejszenie skutków ubocznych chemioterapii zarówno w czasie leczenia, jak i po nim. Głównym składnikiem nanomateriału są „włochate” nanokryształy celulozy. Jego twórcy zapewniają, że 1 gram takich kryształów może przechwycić ponad 6 gramów powszechnie używanego chemioterapeutyku, doksorubicyny (DOX). Tym samym jest 320-krotnie bardzie efektywny niż dotychczasowe alternatywy bazujące na DNA.
      Stosowanie leków przeciwnowotworowych niesie ze sobą cały szereg skutków ubocznych, jak utrata włosów, rozwój anemii czy żółtaczki. Naukowcy starają się zminimalizować te skutki, poszukując sposobu na zmniejszenie stężenia chemioterapeutyków krążących we krwi. Wśród proponowanych rozwiązań jest np. stosowanie cewników ze specjalnymi żywicami czy wprowadzanie do organizmu magnetycznych nanocząstek pokrytych DNA.
      Jednak metody te nie są pozbawione wad. Urządzenia zewnętrzne, jak cewniki, nie dość, że są duże, to mogą usunąć niewiele DOX, zaledwie kilka mikrogramów na każdy miligram absorbentu w ciągu kilkunastu minut. Usunięcie fizjologicznie istotnej ilości DOX wymagałoby cewnika o długości nawet 50 cm, co byłoby bardzo niewygodne dla pacjentów. Dobrą alternatywą są więc nanocząstki z odpowiednim ładunkiem elektrycznym, łączące się we krwi z chemioterapeutykami. Problem jednak w tym, że krew to skomplikowana ciecz, w której nanocząstki szybko mogą utracić swój ładunek.
      Naukowcy z Pennsylvania State University poinformował o rozwiązaniu tego problemu. Naukowcy pracujący pod kierunkiem profesora Amira Sheikhiego rozbili włókna celulozy na nanokryształy, a następnie umieścili je pomiędzy nieuporządkowanymi fragmentami celulozy. Te celulozowe „włosy” są w rzeczywistości zbitkami biopolimerów. Znakomicie zwiększają one zdolność umieszczonych wewnątrz nich kryształów do wiązania się z lekami. Podczas eksperymentów naukowcy zauważyli, że 1 gram takich nanokryształów może związać ponad 6 gramów DOX z serum. Co więcej, okazało się, ze cała struktura nie traci swoich właściwości w kontakcie z krwią, nie uszkadza czerwonych krwinek i nie wpływ na rozwój komórek.
      Naukowcy opisali swój wynalazek na łamach Materials Today. Chemistry. Zapowiadają rozpoczęcie prac nad minimalnie inwazyjnym urządzeniem, służącym usuwania z krwi niepożądanych substancji.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...