Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Różnice w liczebności pewnych bakterii żyjących na języku pozwalają odróżnić ludzi z wczesnym rakiem trzustki od osób zdrowych.

Dotąd zaburzenia mikrobiomu wykrywano w innych tkankach pacjentów z rakiem trzustki. Artykuł z Journal of Oral Microbiology prezentuje pierwsze dowody dot. zmian w obrębie bakterii pokrywających język. Jeśli doniesienia uda się potwierdzić podczas większych badań, utoruje to drogę ratującym życie metodom wczesnego wykrywania czy zapobiegania tej chorobie.

Naukowcy zebrali grupę pacjentów z wczesnym rakiem trzustki (guzem zlokalizowanym w głowie trzustki) oraz 25-osobową grupę kontrolną. Uczestnicy badania mieli 45-65 lat, nie cierpieli na inne choroby, nie mieli problemów stomatologicznych i przez 3 miesiące przed badaniem nie przyjmowali antybiotyków ani innych leków.

Zespół Lanjuan Li ze Szkoły Medycznej Uniwersytetu w Zhenjiangu posłużył się sekwencjonowaniem. Okazało się, że osoby chore można było odróżnić od zdrowych dzięki niskiemu poziomu bakterii Haemophilus i Porphyromonas oraz wysokiemu Leptotrichia i Fusobacterium.

Choć konieczne są dalsze badania weryfikujące, nasze wyniki jako kolejne sugerują, że istnieje związek między zaburzeniami mikrobiomu a rakiem trzustki - podkreśla Li.

Akademicy podejrzewają, że za związkiem mikrobiom-rak trzustki stoi układ immunologiczny i np. rozwój choroby wpływa na reakcje immunologiczne, sprzyjając rozwojowi jednych bakterii i przeszkadzając wzrostowi innych. Gdyby się to potwierdziło, można by zacząć pracować nad nowymi strategiami leczenia za pomocą antybiotyków czy immunoterapii, a nawet preparatami probiotycznymi dla osób z grupy wysokiego ryzyka raka trzustki.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Największe z przeprowadzonych dotychczas badań wykazało, że u zdecydowanej większości amerykańskich noworodków występuje znaczący niedobór bakterii jelitowych odpowiedzialnych za przyswajanie mleka matki oraz rozwój układu odpornościowego, a także za ochronę przed patogenami wywołującymi kolki i pieluszkowe zapalenie skóry. Problem dotyczy aż 90% maluchów.
      Autorami metagenomicznego studium są uczeni ze Stanford University, University of Nebraska i Evolve BioSystems. Odkryli oni, że około 90% niemowląt brakuje Bifidobacterium longum subsp. infantis (B. infantis), bakterii odgrywającej ważną rolę w zdrowiu i rozwoju dzieci. Wcześniejsze badania wielokrotnie dowodziły, że jest to najbardziej korzystna bakteria z punktu widzenia wpływu na zdrowie noworodków i to dzięki niej dziecko może w pełni skorzystać z matczynego mleka.
      Zdecydowana większość dzieci ma niedobory tej kluczowej bakterii od najwcześniejszych tygodni życia. Ani rodzice, ani lekarze nie zdają sobie z tego sprawy. Nasze badania pokazują, jak szeroko zakrojony jest to problem, mówi współautor badań profesor Karl Sylvester z Uniwersytetu Stanforda.
      Okres wkrótce po narodzeniu to czas, gdy tworzą się podstawy dla przyszłego zdrowego życia, w tym rozwija się układ odpornościowy. Kluczową rolę odgrywa tutaj mikrobiom jelit, w którym powinny znaleźć się tysiące gatunków bakterii spełniających najróżniejsze role, od przeprowadzania procesów biologicznych po rozwój różnych systemów i struktur w organizmie.
      B. infantis rozkłada oligosacharydy mleka kobiecego (HMO). To grupa około 200 oligosacharydów unikatowych dla ludzkiego mleka. Związki te pomagają w utrzymaniu korzystnego składu flory jelitowej, utrudniają patogenom osadzanie się na błonie śluzowej jelit, biorą udział w odpowiedzi immunologicznej, prawdopodobnie są też źródeł kwasu sjalowego, który jest potrzebny do prawidłowego rozwoju mózgu. Niestety, bez B. infantis organizm dziecka nie może skorzystać z tych związków.
      B. infantis tym różni się od innych gatunków Bifidobacterii, że jest specjalnie zaadaptowany do ludzkiego mleka i ma szczególne zdolności rozbijania HMO na użyteczne składniki. Coraz więcej badań wskazuje też na istotną rolę tych bakterii w rozwoju układu odpornościowego niemowląt.
      Co więcej, kolejne badania pokazują też, że dysbioza, czyli zaburzenie mikrobiomu jelit u noworodków może prowadzić do zaburzeń immunologicznych w późniejszym życiu i pojawieniu się ostrych chronicznych stanów zapalnych.
      Nauka od niemal 100 lat zbiera dowody wskazujące na postępującą utratę Bifidobacteria w jelitach niemowląt. Przczynami takiego stanu rzeczy są m.in. rosnąca popularność cesarskiego cięcia, coraz powszechniejsze używanie antybiotyków oraz sztucznego karmienia. Wskutek takiego postępowania mamy do czynienia z coraz większym ubytkiem B. infantis, co skutkuje m.in. mniejszą przyswajalnością pożytecznych składników z mleka matki, zaburzonym rozwojem układu odpornościowego, zwiększonym pH jelit i związanym z tym wzrostem patogenów jelit oraz negatywnym ich wpływem na wyściółkę jelit. To wszystko ma zaś negatywne długoterminowe skutki zdrowotne.
      Dotychczas jednak badania nad stanem mikrobiomu jelit noworodków były w USA robione w ograniczonym zakresie. Badano dzieci z jednego obszaru geograficznego czy też dzieci urodzone przedwcześnie, gdzie często występują problemy ze stabilnością mikrobiomu.
      Autorzy najnowszych badań pobrali próbki kału od 227 dzieci w wieku poniżej 6 miesięcy. Próbki pobierano w pięciu różnych stanach i przeanalizowano pod kątem występujących w nich gatunków bakterii oraz ich liczebności. Szczególną uwagę zwracano na obecność bakterii pomagających przyswajać mleko matki.
      Przeprowadziliśmy badania metagenomiczne, których celem było scharakteryzowanie bakterii występujących w jelitach zdrowych dzieci w wieku poniżej 6 miesięcy, opisaniu funkcji ekosystemu bakteryjnego w szczególności jego zdolności do metabolizowania oligosacharydów mleka kobiecego oraz obecności genów antybiotykooporności, stwierdzili autorzy badań. Z badań wykluczono dzieci, które przyjmowały antybiotyki, u których zdiagnozowano problemy z przyswajaniem węglowodanów oraz dzieci cierpiących na żółtaczkę.
      Ze szczegółami badań można zapoznać się w artykule Metagenomic insights of the infant microbiome community structure and function across multiple sites in the United States.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dr Bartosz Kiersztyn z Uniwersytetu Warszawskiego zajmuje się badaniem biofilmów bakteryjnych powstających na różnych powierzchniach w środowisku wodnym. Naukowiec zwrócił uwagę na fakt, że choć [...] w naturalnym środowisku wodnym tworzą się [one] bardzo szybko, to nie powstają wydajnie na powierzchni żywych glonów jednokomórkowych. Eksperymenty wykazały, że jedną z przyczyn tego zjawiska jest substancja wydzielana przez glony podczas fotooddychania. To bardzo istotne odkrycie, gdyż w biofilmach często występują patogenne bakterie, a wiele ich gatunków wytwarza i uwalnia toksyny.
      O ile w wodzie bakterie są w stanie szybko zasiedlić praktycznie każdą powierzchnię, na glonach jednokomórkowych kolonizacja prawie nie występuje. Bakterie niejako powstrzymują się przed kolonizacją żywych mikroskopijnych glonów – nie osadzają się na nich intensywnie i nie namnażają na ich powierzchniach. Obserwacje mikroskopowe oraz biochemiczne i molekularne jednoznacznie na to wskazują.
      Badania pokazały, że gradient mikrostężeń tej substancji wystarczy, by w środowisku wodnym bakterie nie osadzały się intensywnie na danej powierzchni.
      W pewnym momencie pojawił się pomysł, by opracować preparat, który zabezpieczy powierzchnie, w tym odzież i akcesoria wchodzące w kontakt z wodą (np. do uprawiania sportów wodnych), przed powstawaniem biofilmów.
      Takie rozwiązanie ma kilka plusów. Po pierwsze, wytwarzana przez glony naturalna substancja jest tania w produkcji przemysłowej. Możliwość zastosowania jej w mikrostężeniach dodatkowo sprawia, że sam preparat byłby tani w produkcji. Po drugie, naukowcy wskazują, że działanie preparatu wiązałoby się z "odstraszaniem" bakterii, a nie z ich eliminowaniem (eliminowanie groziłoby uwalnianiem z nich toksyn).
      Prowadzone dotychczas eksperymenty na materiałach, z których produkowane są m.in. pianki nurkowe i obuwie do uprawiania sportów wodnych, jednoznacznie potwierdzają, że na odzieży sportowej spryskanej roztworem z odkrytą substancją bakterie wodne osadzają się w minimalnym stopniu. Eksperymenty prowadzono m.in. w naturalnym środowisku w jeziorze Śniardwy, w specjalnie wyselekcjonowanym miejscu obfitującym w wiele szczepów bakteryjnych.
      Marta Majewska, brokerka technologii z Uniwersyteckiego Ośrodka Transferu Technologii przy Uniwersytecie Warszawskim, podkreśla, że odkrycie zostało już objęte ochroną patentową na terenie Polski. Obecnie trwają poszukiwania inwestora/partnera branżowego, który skomercjalizowałby preparat pod własną marką.
      W krajach południowych, gdzie przez większą część roku występują słoneczne i upalne dni, problemy związane z suszeniem oraz konserwacją odzieży i akcesoriów wykorzystywanych w sportach wodnych są znikome. Inaczej jest w naszych szerokościach geograficznych, gdzie nawet latem bywają pochmurne, chłodne i deszczowe dni. Powszechnym wyzwaniem związanym z mokrymi materiałami jest ich higiena oraz impregnacja – bakterie wodne, często posiadające potencjał patogenny, przyczepiają się do materiału, tworząc grube, trudne do usunięcia biofilmy. Odkryty na UW wynalazek pozwala ograniczyć to zjawisko i zabezpieczyć tkaniny.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Bakteriocyny to naturalna broń bakterii przeciwko innym bakteriom - właśnie takich nowych związków poszukują badacze w Morzu Marmara, nad którym leży m.in. Stambuł. Według nich, mogą one w przyszłości okazać się alternatywą dla antybiotyków. Badania prowadzą naukowcy z Politechniki Śląskiej we współpracy z TUBITAK Marmara Research Center w Turcji.
      Jak tłumaczył dr hab. Artur Góra z Centrum Biotechnologii Politechniki Śląskiej, większość bakteriocyn to peptydy o działaniu przeciwbakteryjnym (z ang. Antimicrobial Peptides, w skrócie AMP). To bardzo różnorodna i niezmiernie ciekawa grupa związków o dużej aktywności biologicznej, nie tylko przeciwbakteryjnej, ale także przeciwgrzybiczej, przeciwwirusowej i potencjalnie przeciwnowotworowej. Bakteriocyny to naturalna broń bakterii używana przeciwko innym bakteriom, mająca zapewnić im przewagę ewolucyjną w środowisku – wyjaśnił.
      W przeciwieństwie do obecnie stosowanych antybiotyków, bakteriocyny, dzięki swoim unikalnym właściwościom, mogą okazać się bezpieczną dla środowiska alternatywą, która dodatkowo nie będzie się przyczyniać do zjawiska lekooporności wśród bakterii - dodał.
      Nowych bakteriocyn naukowcy poszukują w Morzu Marmara, nad którym leży m.in. Stambuł. Ze względu na wysokie stężenie związków pochodzenia antropogenicznego (w tym antybiotyków) w zamkniętym Morzu Marmara przewidujemy, że bakterie, które zamieszkują różne nisze ekologiczne w tym akwenie, są oporne na dużą liczbę stosowanych przez nas antybiotyków. W związku z tym bakterie konkurujące pomiędzy sobą o siedliska muszą w tej walce wykorzystywać inne związki chemiczne przeciwko swoim konkurentom - mówił.
      Zadaniem interdyscyplinarnego zespołu złożonego z mikrobiologów, genetyków, biologów strukturalnych, chemików, inżynierów środowiska, chemików obliczeniowych i bioinformatyków jest więc zidentyfikowanie i scharakteryzowanie nowych bakteriocyn, a także analiza bezpieczeństwa ich wykorzystywania w przyszłości.
      Zakres zadań polskiego zespołu jest bardzo szeroki i obejmuje m.in. analizę bioinformatyczną i strukturalną bakteriocyn czy analizę środowiskową potencjalnego efektu toksycznego na organizmy żywe z wszystkich poziomów troficznych. Do tego dochodzą badania stabilności bakteriocyn, ich izolacja, produkcja, oczyszczanie i szereg innych działań. To holistyczne podejście ma za zadanie nie tylko odkrycie nowych bioaktywnych związków o potencjalnym zastosowaniu terapeutycznym, ale już na tym etapie określenie bezpieczeństwa ich stosowania dla środowiska naturalnego - wyjaśnił Góra.
      Badacz przypomniał, że obecnie w walce z patogenami stosuje się dwie strategie: broń względnie selektywną, czyli antybiotyki, na które bakterie na drodze ewolucji potrafią jednak znaleźć remedium, oraz broń "totalną", lecz o znikomej selektywności, np. proste związki chemiczne czy promieniowanie UV, eliminujące wszystkie mikroorganizmy - zarówno szkodliwe, jak i pożyteczne.
      Bakteriocyny, teoretycznie, potrafią łączyć zalety obu grup, mogą być i selektywne, i bezpieczne, i dodatkowo bakteriom bardzo trudno uzyskać na nie oporność. Kluczowym elementem naszej strategii jest bezpieczeństwo dla środowiska oraz naszego naturalnego mikrobiomu. Nie bez znaczenia jest także fakt, że w przypadku identyfikacji skutecznych bakteriocyn ich produkcja na skalę przemysłową może odbywać się z wykorzystaniem bioreaktorów i skutkować znikomym śladem węglowym, innymi słowy być również przyjazną dla środowiska – dodał Góra.
      Dużą wagę naukowcy przywiązują do metod obliczeniowych, które mają pomóc zidentyfikować aktywne bakteriocyny oraz odpowiedzieć na pytanie, które z elementów struktury tych związków są odpowiedzialne za ich wysoką selektywność i aktywność.
      Zaplecze techniczne naukowców stanowić będzie m.in. klaster obliczeniowy należący do Tunnelling Group, superkomputer Ziemowit oraz infrastruktura badawcza nowo powstałego Laboratorium Projektowania Białek i Leków. Tę ostatnią stanowi m.in. unikalna w skali kraju, a także Europy, wysokoprzepustowa stacja umożliwiająca badanie siły oddziaływania różnych związków chemicznych z białkami i innymi makrocząsteczkami stanowiącymi często cele molekularne oraz stacja do analizy procesu rozfałdowywania białek. Umożliwią one poszukiwania nowych związków biologicznie aktywnych (leków) oraz weryfikację wyników otrzymanych metodami obliczeniowymi. Dodatkowo zastosowanie obu metod pozwoli szybciej i efektywniej dokonywać selekcji potencjalnie aktywnych związków (w tym peptydów) oraz badać zależność pomiędzy ich strukturą i funkcją – podał badacz.
      Projekt MarBaccines prowadzony jest w ramach konkursu na polsko-tureckie projekty badawcze; ze strony polskiej naukowcy otrzymali dofinansowanie z NCBiR w wysokości 850 tys. zł.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Tufts University odkryli, że bakterie istotne dla dojrzewania sera reagują na lotne związki organiczne (ang. volatile organic compounds, VOCs) produkowane przez grzyby ze skórki. Powoduje to silniejszy wzrost niektórych z nich. Skład mikrobiomu sera ma krytyczne znaczenie dla smaku i jakości produktu, dlatego ustalenie, jak można go kontrolować czy modyfikować, sporo znaczy dla sztuki serowarniczej.
      Wyniki badań, które ukazały się w piśmie Environmental Microbiology, zapewniają także model dla zrozumienia i modyfikacji innych istotnych mikrobiomów, np. glebowego czy jelitowego.
      Ludzie od stuleci cenią rozmaite aromaty serów, ale dotąd nie badano, jak aromaty te wpływają na biologię mikrobiomu sera - podkreśla prof. Benjamin Wolfe.
      Amerykanie opowiadają, że wiele mikroorganizmów wytwarza lotne związki organiczne w ramach interakcji ze środowiskiem. Dobrze znanym tego rodzaju związkiem jest geosmina emitowana przez mikroorganizmy glebowe; można ją wyczuć w lesie po dużym deszczu.
      Jak podkreślają uczeni, bakterie i grzyby rosnące w dojrzewającym serze wydzielają enzymy, które rozkładają aminokwasy (powstają m.in. alkohole, aldehydy, aminy czy różne związki siarki) i kwasy tłuszczowe (do estrów, ketonów metylowych i alkoholi drugorzędowych). Wszystkie powstałe związki przyczyniają się do zapachu i smaku serów.
      Zespół z Tufts University odkrył, że tak naprawdę VOCs spełniają 2 funkcje. Przyczyniają się do wrażeń zmysłowych i dodatkowo pozwalają grzybom komunikować się i odżywiać bakterie mikrobiomu sera.
      Parując 16 bakterii serowych z 5 grzybami ze skórki sera, naukowcy zauważyli, że grzyby wywoływały u bakterii szereg reakcji (od silnej stymulacji po silne hamowanie). Jeden z gatunków bakteryjnych, Vibrio casei, reagował, rosnąc szybko w obecności VOCs wszystkich 5 grzybów. Inne bakterie, takie jak Psychrobacter, rosły zaś wyłącznie w odpowiedzi na grzyby Galactomyces. Liczebność dwóch innych bakterii spadała natomiast znacząco podczas wystawienia na oddziaływanie VOCs wytwarzanych przez Galactomyces.
      Uczeni stwierdzili, że lotne związki organiczne zmieniały ekspresję wielu genów bakterii, w tym genów wpływających na sposób metabolizowania składników odżywczych.
      Jednym ze wzmacnianych mechanizmów metabolicznych jest szlak glioksalowy (ang. glyoxylate shunt). W ten sposób bakterie mogą skuteczniej wykorzystywać pewne VOCs jako źródła energii i wzrostu.
      Bakterie są w stanie "zjadać" to, co my postrzegamy jako zapachy. To ważne, gdyż ser nie stanowi bogatego źródła łatwo metabolizowanych cukrów, takich jak np. glukoza. Za pośrednictwem VOCs grzyby wspomagają więc bakterie - wyjaśnia dr Casey Cosetta.
      Teraz, gdy wiemy, że związki znajdujące się w powietrzu są w stanie kontrolować skład mikrobiomów, możemy zacząć myśleć o tym, jak kontrolować skład mikrobiomów innych niż serowe, np. w rolnictwie, by poprawić jakość gleby i plony, czy w medycynie, by lepiej sobie radzić z chorobami mikrobiomozależnymi - podsumowuje Wolfe.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wbrew dotychczasowym badaniom i przekonaniom, pokarmy bogate w przeciwutleniacze – jak czarna herbata, czekolada czy jagody – mogą zwiększać ryzyko wystąpienia niektórych nowotworów, ostrzegają uczeni z Uniwersytetu Hebrajskiego.
      Naukowców od dawna zastanawiał pewien fenomen. Jak to się mianowicie dzieje, że nowotwór jelita cienkiego jest dość rzadki, natomiast nowotwór jelita grubego, atakujący znacznie mniejszy sąsiedni organ, jest jedną z głównym przyczyn zgonów z powodu raka. Co powoduje, że jelito grube wydaje się „przyciągać” nowotwory?
      Zagadkę tę postanowił rozwiązać profesor Yinon Ben-Neriah z Uniwersytetu Hebrajskiego w Jerozolimie. Prowadzony przez niego zespół odkrył, że promujące nowotwór mutacje wcale nie muszą być czymś szkodliwym same w sobie. Wręcz przeciwnie. Mutacje takie, w środowisku panującym w jelitach, mogą pomagać organizmowi w zwalczaniu nowotworów.
      Jeśli jednak w mikrobiomie powstaje dużo metabolitów, takich jakie te wytwarzane przez niektóre bakterie i przeciwutleniacze jak czarna herbata czy gorąca czekolada, wówczas powstaje środowisko niezwykle przyjazne dla zmutowanych genów, a to z kolei przyspiesza wzrost nowotworu.
      Po tym odkryciu izraelscy naukowcy dokładniej przyjrzeli się mikrobiomowi jelit i być może znaleźli przyczynę, dla której występuje tak wielka różnica w zapadalności na nowotwory jelita cienkiego i jelita grubego. Okazało się, że w jelicie cienkim występuje niewiele bakterii, a w jelicie grubym mikrobiom jest niezwykle bogaty. Naukowcy coraz więcej uwagi przywiązują do roli, jaką mikrobiom jelit odgrywa w naszym zdrowiu. Badają zarówno jego wpływ pozytywny oraz, jak w naszym przypadku, rolę w rozwoju chorób, wyjaśnia Ben-Neriah.
      Uczeni skupili się na roli genu TP53. To gen obecny w każdej komórce. Wytwarza on proteinę p53, której zadaniem jest tłumienie niekorzystnych mutacji w komórce. Jeśli jednak p53 zostaje uszkodzona, to przestaje chronić komórkę. Zaczyna działać w sposób przeciwny, niż powinna. Pomaga w rozwoju i rozprzestrzenianiu się nowotworu.
      Naukowcy, chcąc sprawdzić zachowanie tej proteiny, postanowili przetestować ją w jelitach. Wprowadzili zatem zmutowaną, promującą nowotwór, p53 do jelita cienkiego. Ku ich zdumieniu proteina ta uległa tam zmianie w swoją normalną, tłumiącą nowotwór, wersję. Gdy jednak zmutowana – szkodliwa – proteina została wprowadzona do jelita grubego, nie uległa zmianie i pozostała w formie promującej nowotwór.
      Okazało się, że mikrobiom jelit odnośnie zmutowanej p53 zachowuje się jak doktor Jekyll i mr Hyde. W jelicie cienkim doprowadza do jej zmiany w proteinę chroniącą przed nowotworem, natomiast w jelicie grubym zmutowana p53 wspomaga rozwój nowotworu, mówią naukowcy.
      Izraelczycy jednak na tym nie poprzestali. Chcąc sprawdzić, czy to flora bakteryjna jest głównym czynnikiem decydującym o sposobie działania zmutowanej p53 w jelitach, zastosowali antybiotyki, którymi zabili mikrobiom jelita grubego. Po takim zabiegu zmutowana p53 nie mogła nadal wspierać rozprzestrzeniania się choroby.
      Bliższa analiza flory bakteryjnej jelita grubego wykazała, że to antyoksydanty wspomagają promujące rozwój nowotworu działanie zmutowanej p53. Okazało się bowiem, że u myszy karmionych dietę bogatą w przeciwutleniacze mikrobiom jelit przyspieszał działanie zmutowanej p53.
      To nowe terytorium badawcze. Byliśmy zaskoczeni, do jakiego stopnia mikrobiom wpływa na mutacje pronowotworowe. W niektórych przypadkach całkowicie zmienia ich naturę, mówi Ben-Neriach.
      Nie można wykluczyć, że osoby, w których rodzinie występował rak jelita grubego, powinny badać mikrobiom swoich jelit i dobrze zastanowić się nad swoją dietą.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...