Sign in to follow this
Followers
0

Polacy i Niemcy stworzyli nowy sposób na precyzyjne wytwarzanie struktur grafenowych
By
KopalniaWiedzy.pl, in Technologia
-
Similar Content
-
By KopalniaWiedzy.pl
Prof. dr hab. Michał Wierzchoń z Instytutu Psychologii Uniwersytetu Jagiellońskiego został wybrany na przewodniczącego Europejskiego Towarzystwa Psychologii Poznawczej (ESCoP). Należy zaznaczyć, że to pierwszy Polak, który będzie piastował tę funkcję od czasów założenia ESCoP w 1985 r.
Bardzo się cieszę, że tak liczne grono badaczy wybrało mnie, abym pokierował Europejskim Towarzystwem Psychologii Poznawczej. To zaszczyt i wielkie wyzwanie, które motywuje do dalszej pracy. Mój wybór stanowi również dowód rozpoznawalności międzynarodowej całego polskiego środowiska psychologów poznawczych - powiedział prof. Wierzchoń.
Naukowiec jest kierownikiem Laboratorium Badań Świadomości C-Lab, dyrektorem Centrum Badań Mózgu UJ, a także wiceliderem inicjatywy „Neuronalna architektura świadomości” (The Neural Architecture of Consciousness). Oprócz tego pełni funkcje prodziekana ds. naukowych Wydziału Filozoficznego UJ, a także kierownika Międzynarodowego Programu Doktorskiego CogNeS.
Prof. Wierzchoń jest autorem licznych publikacji naukowych, w tym książki „Granice świadomości: W poszukiwaniu poznawczego modelu świadomości” oraz artykułów opublikowanych w takich pismach, jak: Journal of Cognitive Psychology, PLoS ONE, Journal of Pain czy Consciousness and Cognition.
Jego zainteresowania obejmują m.in. teorie świadomości, świadomość wzrokową, neuronowe korelaty świadomości oraz substytucję sensoryczną [uczenie mimowolne czy rywalizację obuoczną]. Zespół nowo wybranego przewodniczącego ESCoP wspiera rozwój technologii Colorophone'a - specjalnego oprogramowania, które umożliwia osobom niewidomym rozpoznawanie kolorów za pomocą dźwięku. Projekt ten powstaje na Norweskim Uniwersytecie Naukowo-Technicznym, a jego inicjatorem jest także polski naukowiec Dominik Osiński - podkreślono w komunikacie UJ.
« powrót do artykułu -
By KopalniaWiedzy.pl
Dwudziestodziewięcioletni Mateusz Hołda z Katedry Anatomii UJ CM został najmłodszym profesorem tytularnym w historii Polski. Jak podkreślono w komunikacie prasowym Uniwersytetu Jagiellońskiego, 4 lipca postanowieniem prezydenta RP Andrzeja Dudy otrzymał [on] tytuł profesora nauk medycznych i nauk o zdrowiu w dyscyplinie nauki medyczne. Do tej pory najmłodszym polskim profesorem był Krzysztof Sośnica z Uniwersytetu Przyrodniczego we Wrocławiu.
W 2017 r., jeszcze jako student VI roku kierunku lekarskiego, Hołda zakończył przewód doktorski (mógł go przeprowadzić, ponieważ w 2016 r. został laureatem V edycji Diamentowego Grantu Ministerstwa Nauki i Szkolnictwa Wyższego); egzaminy doktorskie zdał z oceną celującą 9 marca, a pracę doktorską obronił miesiąc później - 10 kwietnia. Ponad dwa lata temu (2020) został najmłodszym w historii polskiej nauki posiadaczem stopnia doktora habilitowanego.
W 2019 r. Forbes umieścił Hołdę na liście „30 under 30”, a więc w prestiżowym gronie Europejczyków przed trzydziestką, którzy są w swoich dziedzinach liderami. W tym samym roku [Hołda] został uznany przez Europejski Bank Odbudowy i Rozwoju oraz brytyjski think-tank Emerging Europe za najbardziej wpływowego Europejczyka młodego pokolenia - napisano na stronie UJ CM.
Hołda był wielokrotnie wyróżniany i nagradzany, zarówno w kraju, jak i poza jego granicami. Dostał, m.in.: nagrodę Polskiej Akademii Nauk – Laur Medyczny im. dr Wacława Mayzla (2015), Studenckiego Nobla w kategorii nauki medyczne i nauki o zdrowiu (2016), stypendium Fundacji na rzecz Nauki Polskiej START (2017), stypendium Ministra Nauki i Szkolnictwa Wyższego dla wybitnych młodych naukowców (2018), tytuł naukowca przyszłości (2019), a także nagrodę Emerging Europe w kategorii Young Influencer of the Year.
W dorobku najmłodszego polskiego profesora tytularnego znajduje się niemal 100 publikacji w wiodących czasopismach naukowych, w tym w „Annals of Anatomy”, „International Journal of Cardiology”, „Journal of Anatomy”, „Stroke” czy „JASE”.
W swojej pracy naukowej specjalista skupia się na morfologii układu sercowo-naczyniowego (od poziomu molekularnego do poziomu narządu) i technikach obrazowania architektury mięśnia sercowego.
Już w 2013 r. Hołda założył międzynarodowy zespół naukowy HEART (ang. Heart Embryology and Anatomy Research Team), który zajmuje się właśnie badaniami nad architekturą układu sercowo-naczyniowego; warto dodać, że pozostaje jego kierownikiem.
Dotychczas najmłodsi polscy profesorowie otrzymywali tytuł po 30. r.ż. Dwa lata temu w wieku 35 lat profesorem został Krzysztof Sośnica z UPWr. W lutym br. nominację uzyskał 36-letni Paweł Chmielarz z Politechniki Rzeszowskiej (został on najmłodszym profesorem tytularnym w naukach inżynieryjno-technicznych). W 2005 roku najmłodszym uczonym z tytułem profesora był 37-latek - Marek Ogiela z Akademii Górniczo-Hutniczej. Jesienią 2021 roku do grona profesorów dołączył z kolei, ukończywszy 38 lat, Wojciech Piątek z Uniwersytetu im. Adama Mickiewicza w Poznaniu - podano w komunikacie UJ.
Jak podchodzi do swojego sukcesu główny zainteresowany? Oto jego wpis z 20 lipca na Facebooku: To chyba ten moment, na który czeka każdy naukowiec. Wynik dziewięciu lat intensywnej pracy naukowej zaowocował przyznaniem mi tytułu profesora medycyny. I tak oto w wieku 29 lat stałem się najmłodszym w historii Polski profesorem. Na drodze do tego sukcesu było więcej porażek niż zwycięstw - było ciężko (czasami bardzo ciężko), ale na pewno było warto. Dziękuję wszystkim którzy przyczynili się do tego sukcesu - jest Was wielu! Myślę, że to jednak nie jest koniec mojej ścieżki naukowej, a dopiero jej początek.
« powrót do artykułu -
By KopalniaWiedzy.pl
W projektach związanych z syntezą termojądrową konieczne jest wykorzystanie materiałów odpornych na wysokie temperatury i uszkodzenia radiacyjne. Obiecujące pod tym względem są materiały bazujące na węglu, zwłaszcza nanorurki węglowe i grafen. Naukowcy z Zakładu Badań Reaktorowych NCBJ brali udział w badaniach odporności detektorów grafenowych na wysokie strumienie neutronów.
Reaktory termojądrowe, takie jak powstające obecnie w Cadarache we Francji urządzenie badawcze ITER (International Thermonuclear Experimental Reactor), czy powstający w Hiszpanii jego następca – DEMO (Demonstration Power Plant), wykorzystują silne pole magnetyczne do uwięzienia plazmy, w której zachodzą reakcje syntezy lekkich jąder atomowych. By umożliwić efektywne zachodzenie reakcji syntezy, plazmę należy podgrzać do temperatury dziesiątek milionów stopni Celsjusza. Aby zapewnić stabilne działanie urządzenia, konieczna jest precyzyjna diagnostyka pola magnetycznego. Ze względu na działające na znajdującą się we wnętrzu reaktora elektronikę warunki, takie jak wysoka temperatura (rzędu kilkuset °C) czy silne promieniowanie neutronowe, większość komercyjnie dostępnych półprzewodnikowych czujników pola magnetycznego nie jest w stanie pracować w takich układach. Z tego powodu prowadzone są badania nad detektorami metalowymi, opartymi o chrom czy bizmut. Niestety, detektory oparte o nie mają niską czułość i duży przekrój czynny na oddziaływanie z neutronami.
Interesującą alternatywą wydają się być detektory wykonane w technologii kwaziswobodnego grafenu epitaksjalnego na węgliku krzemu. Warstwy grafenu mogą być formowane w bardzo czułe sensory efektu Halla: jeżeli przewodnik, przez który płynie prąd elektryczny, znajduje się w polu magnetycznym, pojawia się w nim różnica potencjałów – tzw. napięcie Halla, które może posłużyć do pomiaru pola magnetycznego. Zbadana została już odporność grafenu na promieniowanie. Badania przeprowadzono wykorzystując zarówno wiązki jonów, protonów, jak i elektronów, i nie wykryto istotnych zmian właściwości napromienionych próbek. Przewidywania teoretyczne sugerują, że podobnie grafen reaguje na promieniowanie neutronowe, jednak nigdy wcześniej nie zostało to bezpośrednio potwierdzone eksperymentalnie.
W pracy, która ukazała się na łamach czasopisma Applied Surface Science, zbadano wpływ prędkich neutronów na układ detektora opartego na grafenie. Instytut Mikroelektroniki i Fotoniki (IMiF) funkcjonujący w Sieci Badawczej Łukasiewicz wytworzył strukturę składającą się z grafenu na wysyconej atomami wodoru powierzchni węglika krzemu 4H-SiC(0001). Całość pokryto dielektryczną pasywacją z tlenku glinu, stanowiącą zabezpieczenie środowiskowe warstwy aktywnej detektora – mówi dr inż. Tymoteusz Ciuk, kierujący pracami w Łukasiewicz-IMiF. Tak przygotowany układ został następnie poddany napromienieniu neutronami prędkimi wewnątrz rdzenia reaktora MARIA w NCBJ.
Zamontowana w rdzeniu reaktora MARIA unikatowa instalacja do napromieniania neutronami prędkimi pozwala nam przeprowadzać badania materiałów, bądź podzespołów przewidywanych do wykorzystania w układach termojądrowych, w których także są generowane prędkie neutrony – opowiada dr inż. Rafał Prokopowicz, kierownik Zakładu Badań Reaktorowych NCBJ, współautor pracy. W przypadku badań nad strukturami detekcyjnymi z grafenu, próbki napromienialiśmy przez ponad 120 godzin neutronami prędkimi o fluencji rzędu 1017 cm–2, by oddać warunki, na jakie narażona jest elektronika w instalacjach termojądrowych – dodaje mgr Maciej Ziemba z Zakładu Badań Reaktorowych. „Aby zapewnić bezpieczeństwo badań, testy podzespołów wykonano, gdy aktywność próbek nie stanowiła już zagrożenia, czyli po kilku miesiącach od napromienienia”.
Zarówno przed napromienieniem, jak i po napromienieniu próbek, w Instytucie Fizyki Politechniki Poznańskiej dokładnie zbadano ich strukturę i właściwości elektryczne. Wykorzystano do tego spektroskopię Ramana, badania efektu Halla, jak również wielkoskalowe modelowanie z użyciem teorii funkcjonału gęstości (DFT – density functional theory). Dodatkowo, naukowcy z Politechniki Poznańskiej przeprowadzili charakteryzację napromienionych struktur po ich wygrzewaniu w temperaturze od 100 do 350°C, by zbadać działanie temperatury, w połączeniu z wpływem prędkich neutronów, na właściwości elektryczne. Dzięki testom wykryto na przykład, że z powodu promieniowania, w materiale pojawia się zależność właściwości elektrycznych od temperatury, która nie występowała przed umieszczeniem próbek w strumieniu neutronów – wyjaśnia dr inż. Semir El-Ahmar, kierujący badaniami na Politechnice Poznańskiej. Co więcej, promieniowanie neutronowe powoduje zmniejszenie gęstości nośników ładunku w badanej strukturze. Okazuje się jednak, że odpowiada za to warstwa wodoru, a więc napromienienie jedynie w umiarkowanym stopniu wpływa na strukturę i właściwości grafenu.
Na podstawie charakteryzacji właściwości badanych struktur przed napromienieniem i po ich napromienieniu, oceniono odporność grafenu na promieniowanie neutronowe jako bardzo dobrą. Gęstość uszkodzeń radiacyjnych była 7 rzędów wielkości mniejsza, niż wartość strumienia neutronów, co oznacza dość niski przekrój czynny grafenu na oddziaływanie z neutronami prędkimi. Mimo, iż wystąpiły uszkodzenia struktury spowodowane promieniowaniem, to w porównaniu z detektorami bazującymi na metalach, czułość układu z grafenem na pole magnetyczne pozostaje kilka rzędów wielkości większa – podsumowuje wyniki dr El-Ahmar. Dodatkowo, okazało się, że duża część uszkodzeń była związana nie z samymi warstwami grafenu, a z warstwą wodoru, która z kolei przy temperaturach powyżej 200°C, jakie będą panować w instalacjach takich jak DEMO, wykazuje wręcz pewien potencjał samo-naprawczy. Z uwagi na to, grafenowe detektory pola magnetycznego mogą stanowić obiecujące struktury do wykorzystania w reaktorach termojądrowych.
Nad zastosowaniem grafenu jako bazy przy detekcji pola magnetycznego w instalacjach termojądrowych prowadzone będą dalsze badania. Naukowcy rozważają wykorzystanie innego typu podłoża – np. 6H-SiC(0001), na którym formowana struktura może być bardziej odporna na promieniowanie neutronowe. Rozważane jest też zastąpienie warstwy wodoru buforową warstwą atomów węgla.
« powrót do artykułu -
By KopalniaWiedzy.pl
Naukowcy z Uniwersytetu Jagiellońskiego stworzyli kwantowy nanomagnes o wyjątkowych właściwościach. To krok w kierunku nowych rodzajów komputerowych pamięci i procesorów.
Zespół Uniwersytetu Jagiellońskiego pod kierunkiem dr. hab. Dawida Pinkowicza, na łamach prestiżowego pisma „Nature Communications” opisał unikalną cząsteczkę – nowego typu metaloorganiczny nanomagnes kwantowy.
Nanomagnesy badane są już od lad 90, ale polski zespół stworzył strukturę, która w skali nano przypomina te, jakie stosuje się w zwykłych, dużych magnesach. W nowej cząsteczce centralny jon magnetyczny otoczony jest wyłącznie przez inne jony metali. Molekuła składa się bowiem z centralnego jonu erbu (metal ziem rzadkich), który łączy się z trzema ciężkimi jonami renu (metal przejściowy). To pozwala zbliżyć się do cenionych właściwości, jakie wykazują duże, makroskopowe magnesy.
Choć praktyczne zastosowania molekularnych magnesów raczej nie pojawią się w najbliższej przyszłości, to w dłuższej perspektywie takie badania mogą odmienić kluczowe dla cywilizacji dziedziny, np. informatykę.
W pierwszej kolejności nanomagnesy kwantowe mają szansę zastąpić dotychczas stosowane materiały magnetyczne tam, gdzie już osiągnęły one granicę swoich możliwości. Tak jest właśnie w przypadku magnetycznych dysków twardych. Ich dalszy rozwój jest już ograniczony przez same prawa fizyki, które nie pozwalają na dalszą miniaturyzację domen magnetycznych stanowiących podstawową jednostkę pamięci - wyjaśnia mgr Michał Magott, członek grupy badawczej.
W dalszej kolejności nanomagnesy mają szansę na zastosowanie w konstrukcji tranzystorów, a właściwie spintronicznych tranzystorów, które mogą w przyszłości zastąpić tradycyjne tranzystory w układach elektronicznych, a do ich konstrukcji potrzebne jest właśnie źródło magnetyzmu naszych nanomagnesów, czyli spin elektronu – dodaje.
Jednym z kluczowych zadań, przed którymi stoją projektanci nanomagesów, jest uzyskanie takich struktur, które będą działały w temperaturze pokojowej. Obecnie wymagają one zwykle silnego chłodzenia, co utrudnia lub wręcz uniemożliwia praktyczne zastosowania. Dopiero w 2020 r. jedna z grup zajmujących się tym tematem uzyskała molekularny magnes, który działa w temperaturze ok. minus 30 stopni. To ogromny sukces.
Mamy nadzieję, że nasze odkrycie zadziała w podobny sposób - zaproponowaliśmy zupełnie nową strategię syntezy molekularnych nanomagnesów, która umożliwia otrzymanie cząsteczek, naśladujących struktury stosowanych przemysłowo magnesów metalicznych. Liczymy na to, że właśnie ta nowa ścieżka syntetyczna będzie potrzebną zmianą strategii, która umożliwi otrzymanie wysokotemperaturowych molekularnych nanomagnesów – mówi mgr Magott.
Badacza i jego kolegów czekają teraz dalsze, żmudne badania.
Na razie udało nam się pokazać, że ta nowa strategia syntetyczna jest skuteczna i pozwala na otrzymanie świetnego nanomagnesu. Teraz trzeba przeprowadzić setki (może nawet tysiące) prób z wykorzystaniem tego nowego podejścia, aż uda się otrzymać taki nanomagnes, który nada się do zastosowań praktycznych – podkreśla naukowiec.
Badania nad nanomagnesem ErRe 3 zostały sfinansowane przez Narodowe Centrum Nauki w ramach projektu Sonata Bis 6.
« powrót do artykułu -
By KopalniaWiedzy.pl
W Instytucie Fizyki Uniwersytetu Jagiellońskiego powstał pierwszy na świecie tomograf, który pozwala na uzyskanie trójfotonowego obrazu PET. Urządzenie J-PET autorstwa profesora Pawła Moskala i jego zespołu znacząco różni się od tradycyjnych tomografów PET, generujących obraz w oparciu o dwa fotony. Nowatorska technika obrazowania nie tylko pozwoli na lepsze diagnozowanie nowotworów, ale umożliwi też badanie symetrii pomiędzy materią a antymaterią.
Tomograf powstał w ramach projektu Jagielloński PET (J-PET). Wykorzystuje on znaną technikę obrazowania metodą pozytonowej tomografii emisyjnej. Podczas tej techniki wyznaczany jest przestrzenny rozkład atomów pozytonium, czyli stanów związanych elektronu i pozytonu, które powstają w ciele pacjenta w czasie badania PET. Zespół profesora Moskala z UJ oraz ich współpracownicy z Uniwersytetu Marii Curie-Skłodowskiej w Lublinie, Narodowego Centrum Badań Jądrowych, Uniwersytetu w wiedniu i włoskiego Narodowego Instytutu Fizyki Jądrowej, jako pierwszy pokazał, w jaki sposób zrekonstruować rozpad pozytonium na trzy fotony.
Możliwość rekonstrukcji takiego właśnie rozpadu pozytonium pozwala na opracowanie niekonwencjonalnych sposobów obrazowania PET. Umożliwia również prowadzenie badań podstawowych. Profesor Moskal i jego grupa opublikowali na łamach Nature Communications artykuł, w którym opisali test symetrii względem połączenia odwrócenia ładunku (C), odbicia przestrzennego (P) i odwrócenia w czasie (T) w układach leptonowych. To tzw. test symetrii CPT. Dzięki wykorzystaniu J-PET osiągnęli niespotykaną dotychczas precyzję (10-4) takich badań przeprowadzonych za pomocą pozytonium.
Projekt Jagielloński PET ma na celu stworzenie urządzenia, które pozwoli na jednoczesne obrazowanie całego ciała. Naukowcy chcą, by służyło ono zarówno do lokalizowania nowotworów, jak i określania stopnia ich złośliwości, badania rozprowadzania leków i ich metabolizmu. W skład zespołu pracującego nad nowatorskim rozwiązaniem wchodzą lekarze, biolodzy, chemicy, fizycy, elektronicy i informatycy. Urządzenie budowane jest w oparciu o technologię stworzoną na Uniwersytecie Jagiellońskim.
Jednocześnie na uczelni powstaje Centrum Teranostyki. To termin stworzony z połączenia słów terapia i diagnostyka. Centrum będzie zajmowało się opracowywaniem rozwiązań technologicznych pozwalających na jednoczesne wykrywanie i leczenie chorób.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.