Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Chorym na alzheimera można przywrócić pamięć?

Recommended Posts

Wykorzystując epigenetykę naukowcy z University at Buffalo skorygowali dysfunkcje synaps powiązane z utratą pamięci. Badania, których wyniki opisano na łamach Brain, to nowe podejście do leczenia choroby Alzheimera (AD), które daje nadzieję na odwrócenie związanego z tą chorobą procesu utraty pamięci.

W naszym artykule nie tylko zidentyfikowaliśmy czynniki epigenetyczne, które przyczyniają się do utraty pamięci, ale również znaleźliśmy sposób na czasowe odwrócenie tej utraty w zwierzęcym modelu choroby Alzheimera, mówi profesor Zhen Yan. Badania prowadzono na mysim modelu wyposażonym w mutacje genetyczne typowe dla wspomnianej choroby.

Wiadomo, że do pojawienia się alzheimera przyczyniają się zarówno czynniki genetyczne jak i środowiskowe, takie jak starzenie się. Czynniki środowiskowe prowadzą do zmian epigenetycznych, zmian w ekspresji genów, które nie są dobrze rozumiane przez naukę. Zmiany epigenetyczne w chorobie Alzheimera zachodzą głównie w późniejszych jej etapach i objawiają się dramatycznym spadkiem zdolności poznawczych, mówi Yan. Głównym powodem tego spadku jest utrata receptorów glutaminianowych.

Odkryliśmy, że w chorobie Alzheimera wiele podjednostek receptorów glutaminianowych w korze czołowej jest regulowanych w dół, co zaburza sygnały je pobudzające, a to z kolei negatywnie wpływa na pamięć, wyjaśnia Yan. Regulacja w dół (downregulation) to proces, w którym komórka, pod wpływem czynników zewnętrznych, zmniejsza ilość różnych swoich składników, jak RNA czy protein. W ten sposób może dochodzić np. do zmniejszenia liczby receptorów danej molekuły, co zmniejsza wrażliwość komórki na tę molekułę.

Naukowcy zauważyli, że utrata receptorów glutaminianowych to skutek hamującej modyfikacji histonów. Ten proces epigenetyczny jest zintensyfikowany w chorobie Alzheimera. Zaobserwowano go zarówno w modelach mysich, jak i w pośmiertnym badaniu tkanki mózgowej osób cierpiących na AD.

Yan wyjaśnia, że czynniki wpływające na modyfikację histonów zmieniają strukturę chromatyny, która kontroluje działanie genów. Ta powiązana z AD nieprawidłowa modyfikacja histonów jest tym, co hamuje ekspresję genów, zmniejsza liczbę receptorów glutaminianowych, co prowadzi do utraty funkcji synaptycznych i deficytów pamięciowych, dodaje Yan.

Nie można wykluczyć, że zrozumienie tego procesu pozwoli na stworzenie odpowiednich leków, gdyż hamująca modyfikacja histonów jest kontrolowana przez enzymy. Nasze badania nie tylko wykazały istnienie korelacji pomiędzy zmianami epigenetycznymi a AD, ale również odkryliśmy, że możemy skorygować dysfunkcje poznawcze za pomocą środków wpływających na enzymy i w ten sposób odzyskać receptory glutaminianowe, stwierdza uczona. Gdy podawaliśmy zwierzętom z chorobą Alzheimera nasz inhibitor enzymów, zauważyliśmy odzyskanie funkcji poznawczych, co potwierdziliśmy w testach pamięci przestrzennej, roboczej i pamięci deklaratywnej. Byliśmy zdumieni tak olbrzymią poprawą funkcji poznawczych. Jednocześnie obserwowaliśmy odtworzenie ekspresji receptorów glutaminianowych i funkcji kory czołowej, mówi Yan.

Poprawa utrzymywała się przez tydzień po trzykrotnym podaniu środka. Przyszłe badania będą skupiały się na stworzeniu leku, który bardziej efektywnie będzie penetrował mózg i zapewni długotrwałe odzyskanie funkcji poznawczych.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Uniwersytet im. Adama Mickiewicza w Poznaniu (UAM), Politechnika Poznańska oraz neurolodzy i psychiatrzy chcą opracować nową, bezinwazyjną metodę diagnozowania choroby Alzheimera na wczesnym etapie. Jak podkreślono na stronie UAM, w celu przeprowadzenia badań pilotażowych w projekcie naukowcy planują zgromadzić grupę około 50 osób zagrożonych rozwojem choroby, a także podobną grupę kontrolną.
      Choroba Alzheimer przez dekady może rozwijać się bez żadnych objawów. Tymczasem, jak w przypadku większości chorób, wczesne rozpoznanie ma olbrzymie znaczenie dla rokowań. Im zatem szybciej schorzenie zostanie zdiagnozowane, tym większa szansa na wyleczenie czy powstrzymanie dalszych postępów choroby. Wszyscy mamy nadzieję, że prędzej czy później będziemy dysponować skutecznym lekiem, jednak może się okazać, że największą barierą w jego zastosowaniu będzie dostęp do wczesnej diagnostyki - obecnie drogiej i trudno osiągalnej, mówi profesor Jędrzej Kociński z UAM.
      Naukowcy zapraszają więc do wzięcia udziału w bezpłatnych anonimowych badaniach wszystkich, którzy podejrzewają, że coś złego dzieje się z ich pamięcią, oraz osoby po 50. roku życia bez zaburzeń pamięci, ale w rodzinach których są lub były osoby z wczesnym otępieniem (czyli takie, u których rozwinęło się one przed 65. rokiem życia). W badaniach nie mogą wziąć udział osoby z wyraźnymi objawami otępienia, ani z już zdiagnozowaną chorobą Alzheimera. Szczegółowe informacje o projekcie znajdziemy na stronach Alzheimer Prediction Project, a chęć udziału w badaniu można zgłosić pisząc na adres kierownika projektu, doktora Marcina Górniaka, lekarz.marcin.gorniak[at]gmail.com.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy ze Scripps Research oraz Massachusetts Institute of Technology (MIT) dokonali odkrycia, które może wyjaśniać, dlaczego to kobiety dwukrotnie częściej zapadają na chorobę Alzheimera. Na łamach Science Advances opublikowali oni artykuł, w którym informują, że w mózgach kobiet, które zmarły na alzheimera, znaleziono znacznie więcej szczególnie szkodliwej, chemicznej zmienionej formy białka dopełniacza C3 niż w mózgach mężczyzn. Wykazali też, że estrogen, którego wytwarzanie znacząco spada w czasie menopauzy, chroni kobiety przed tworzeniem się tej formy białka.
      Układ dopełniacza to zespół około 60 białek surowicy i płynów tkankowych, które biorą udział w obronie przeciwzakaźnej organizmu. Jest to jeden z najstarszych mechanizmów odporności nieswoistej. Odpowiada on między innymi za zabijanie komórek bakteryjnych, stymulację rozwoju pamięci immunologicznej czy usuwanie potencjalnie szkodliwych cząsteczek własnych powstających w wyniku śmierci komórkowej. Białko dopełniacza C3 jest bardzo starym białkiem. Występowało już u szkarłupni i osłonic 700 milionów lat temu.
      Nasze odkrycie sugeruje, że chemiczna modyfikacja tego składnika układu dopełniacza napędza chorobę Alzheimera i może – przynajmniej częściowo – wyjaśniać, dlaczego schorzenie to dotyka głównie kobiety, mówi profesor neurologii Stuart Lipton.
      Zespół Liptona bada biochemiczne i molekularne podstawy chorób neurodegeneracyjnych. To oni w przeszłości odkryli proces S-nitrolizacji, któremu poddawane jest białko C3. To reakcja, w czasie której tlenek azotu (NO) przyłącza się do atomu siarki w białku, tworząc zmodyfikowaną formę białka SNO-białko. Modyfikacje białek przez niewielkie grupy atomów są czymś naturalnym i zwykle prowadzą do aktywacji lub dezaktywacji funkcji danego białka. Z przyczyn technicznych S-nitrolizacja jest procesem trudniejszym do badania niż podobne zjawiska.
      Kierowani przez Liptona uczeni wykorzystali nowatorskie metody wykrywania S-nitrolizacji do oceny poziomu protein, które uległy modyfikacji w mózgach 40 zmarłych. Połowa z mózgów pochodziła od osób, które zmarły na chorobę Alzheimera, połowa od osób, które na nią nie cierpiały. Obie grupy były równo podzielone pomiędzy mózgi kobiet i mężczyzn.
      W sumie naukowcy znaleźli 1449 różnych proteiny, które uległy S-nitrolizacji. Wśród tych, które najczęściej ulegały takiej modyfikacji, było kilkanaście łączonych z chorobą Alzheimera, w tym białko dopełniacza C3. Okazało się, że poziom SNO-C3 – czyli białka dopełniacza C3, które uległo S-nitrolizacji – był w mózgach kobiet zmarłych na Alzheimera ponad 6-krotnie wyższy, niż w mózgach mężczyzn, którzy zmarli z tego samego powodu.
      Naukowcy od ponad 30 lat wiedzą, że w mózgach chorych na alzheimera występuje podwyższony poziom białek dopełniacza i innych markerów stanu zapalnego. Badania wykazały też, że białka dopełniacza mogą pobudzić komórki odpornościowe mózgu – mikroglej – do niszczenia synaps.
      Dlaczego jednak SNO-C3 miałoby częściej występować u kobiet z Alzheimerem? Od dawna pojawiają się dowody sugerujące, że estrogen chroni mózgi kobiet. Dlatego też Lipton i jego zespół wysunęli hipotezę, że estrogen chroni mózgi pań szczególnie przed S-nitrolizacją białka C3, a ochrona ta znika wraz z menopauzą. Przeprowadzili więc badania na hodowanych w laboratorium komórkach ludzkiego mózgu. Wykazali w ten sposób, że po zmniejszeniu poziomu estrogenu dochodzi do aktywacji enzymu wytwarzającego NO, co pociąga za sobą wzrost liczby SNO-C3.
      Od dawna było tajemnicą, dlaczego kobiety są bardziej narażone na chorobę Alzheimera. Myślę, że nasze badania to waży element układanki wyjaśniającej tę kwestię, stwierdza profesor Lipton. W kolejnym etapie badań uczony chce sprawdzić, czy zastosowanie środków usuwających modyfikację SNO doprowadzi do ograniczenia rozwoju patologii w tkance mózgowej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Neurolog Anna Schapiro z University of Pennsylvania i jej zespół, wykorzystując model sieci neuronowej, odkryli, że gdy w czasie snu nasz mózg wchodzi i wychodzi z fazy REM, hipokamp uczy korę nową tego, czego dowiedział się za dnia. Od dawna wiadomo, że w czasie snu zachodzą procesy uczenia się i zapamiętywania. W ciągu dnia kodujemy nowe informacje i doświadczenia, idziemy spać, a gdy się budzimy, nasza pamięć jest już w jakiś sposób zmieniona, mówi Schapiro.
      Schapiro, doktorant Dhairyya Singh oraz Kenneth Norman z Princeton University stworzyli model obliczeniowy oparty na sieci neuronowej, który dał im wgląd w proces uczenia się w czasie snu.
      Z artykułu opublikowanego na łamach PNAS dowiadujemy się, że w czasie gdy mózg przechodzi z fazy NREM do REM, co ma miejsce około 5 razy w ciągu nocy, hipokamp przekazuje do kory nowej informacje zdobyte za dnia.
      To nie jest tylko model uczenia się lokalnych struktur mózgu. To model pokazujący, jak jeden obszar mózgu uczy drugi obszar mózgu w czasie snu, gdy nie ma wskazówek ze świata zewnętrznego. To również pokazuje, jak zapamiętujemy informacje o zmieniającym się otoczeniu, mówi Schapiro.
      Naukowcy zbudowali model złożony z hipokampu – obszaru mózgu odpowiedzialnego za zdobywanie nowych informacji – i kory nowej, w której m.in. odbywają się procesy związane z językiem, świadomością wyższego rzędu i pamięcią długotrwałą. Model pokazał, że podczas fazy NREM mózg – pod kierunkiem hipokampu – głównie „przegląda” najnowsze wydarzenia i dane, a w czasie fazy REM uruchamiane są dawniejsze wspomnienia, przechowywane w korze nowej. Oba te obszary mózgu komunikują się między sobą w fazie NREM. To wtedy hipokamp przekazuje do kory nowej to, czego się niedawno nauczył. Natomiast w fazie REM aktywuje się kora nowa, które odtwarza to, co już wie, dzięki czemu tworzone jest pamięć długotrwała, wyjaśnia Singh.
      Dodaje, że bardzo ważne jest przełączanie pomiędzy obiema fazami. Gdy kora nowa nie ma szans na odtworzenie sobie informacji, które przechowuje, zostają one nadpisane. Uważamy, że do powstania długotrwałych wspomnień konieczne jest przełączanie się pomiędzy fazami REM i NREM, stwierdza Singh.
      Naukowcy zastrzegają, że wciąż muszą potwierdzić eksperymentalnie swoje spostrzeżenia. Zauważają też, że ich symulacje dotyczyły dorosłej osoby, która dobrze przespała całą noc. Zatem nie muszą być prawdziwe w odniesieniu do innych sytuacji, jak np. do dzieci czy dorosłych, którzy dobrze nie spali. Tego typu model, który można dostosowywać do różnych sytuacji i osób, może być niezwykle przydatny w badaniach nad problemem snu. W dłuższej perspektywie posłuży on do badań nad zaburzeniami psychicznymi i neurologicznymi, w których zaburzenia snu są jednym z objawów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Journal of Experimental Psychology: General opublikowano wyniki badań, z których dowiadujemy się, że używanie urządzeń elektronicznych, takich jak smartfony, pomaga poprawić nasze zdolności pamięciowe. Z badań przeprowadzonych przez naukowców z University College London (UCL) wynika, że na urządzeniach przechowujemy bardzo ważne informacje, to zaś zwalnia naszą pamięć i ułatwia przywoływanie dodatkowych, mniej ważnych informacji. Wyniki badań stoją w sprzeczności z wcześniejszymi obawami neurologów, którzy sądzili, że nadużywanie nowoczesnych technologii może prowadzić do upośledzenia zdolności poznawczych i powoduje „cyfrową demencję”.
      Okazało się jednak, że wykorzystywanie urządzeń cyfrowych jako pamięci zewnętrznej pomaga nie tylko w zapamiętywaniu informacji zapisanych na tych urządzeniach, ale również w zapamiętywaniu niezapisanych informacji.
      Naukowcy z UCL opracowali specjalny test pamięci na tablety i komputery. Do badań zaangażowali 158 ochotników w wieku 18–71 lat. Uczestnikom pokazywano na ekranie do 12 ponumerowanych okręgów, a ich zadaniem było przeciągnięcie części z nich na prawą, a części na lewą stronę ekranu. Badani mieli zapamiętać numery okręgów, jakie przeciągnęli na każdą ze stron. Im więcej ich zapamiętali, tym wyższą wypłatę otrzymywali na koniec eksperymentu. Jedna ze stron ekranu była stroną o wysokiej wartości. Za zapamiętanie przeciągniętego tam numeru płacono 10-krotnie więcej, niż za zapamiętanie numeru przeciągniętego na stronę o niskiej wartości.
      Uczestnicy wykonywali test 16-krotnie. Przy połowie testów musieli polegać wyłącznie na własnej pamięci, przy połowie zaś mogli zapisywać wyniki na urządzeniach elektronicznych. Badani zwykle zapisywali na urządzeniach elektronicznych wartości okręgów przeciąganych do strony o wysokiej wartości. Okazało się, że gdy to robili, byli w stanie samodzielnie zapamiętać o 18% więcej liczb przeciągniętych do strony o wysokiej wartości. Ale to nie wszystko. Zapamiętywali też o 27% liczb przeciągniętych do strony o niższej wartości, mimo że tych liczb nie zapisywali.
      Jednak używanie urządzeń elektronicznych miało też i negatywną stronę. Gdy je bowiem uczestnikom badań zabrano, lepiej pamiętali liczby ze strony o niższej wartości. To wskazuje, że zapamiętywanie liczb o wyższej wartości powierzyli urządzeniu elektronicznemu i bardzo szybko o nich zapomnieli.
      Chcieliśmy zbadać, jak przechowywanie informacji na urządzeniu elektronicznym wpływa na zdolność do zapamiętywania. Odkryliśmy, że gdy ludzie mogą używać pamięci zewnętrznej, pomaga im to w zapamiętywaniu informacji, które zapisali. To nie było zaskoczeniem. Ale zauważyliśmy też, że lepiej zapamiętywali informacje, których nie zapisali. Działo się tak, gdyż używanie urządzenia elektronicznego zmieniło sposób, w jaki używali pamięci do przechowywania ważnych i mniej ważnych danych. Gdy musimy zapamiętać coś samodzielnie, używamy pamięci to przechowywania najważniejszych informacji. Ale gdy możemy użyć zewnętrznego urządzenia, najważniejsze informacje są na nim zapisywane, a naszą własną pamięć wykorzystujemy do zapamiętania tych mniej ważnych, mówi doktor Sam Gilbert.
      Uczony zauważa, że – wbrew obawom – urządzenia elektroniczne nie wywołują „cyfrowej demencji”, ale przyczyniają się do lepszego zapamiętywania informacji, których na nich nie zapisaliśmy. Musimy jednak ostrożnie przechowywać nasze najważniejsze dane. Gdy bowiem urządzenie elektroniczne zawiedzie, może się okazać, że w naszej pamięci zostały nam tylko i wyłącznie mniej ważne informacje, ostrzega uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Początki choroby Alzheimera wciąż stanowią tajemnicę dla nauki. Może bowiem zaczynać się on wcześnie i przez lata powoli rozwijać nie dając żadnych widocznych objawów. Dlatego też wciąż nie poznano wszystkich mechanizmów leżących u podstaw tej choroby.
      Naukowcy z Tufts University i Uniwersytetu w Oksfordzie poinformowali właśnie na łamach Journal of Alzheimer's Disease, że wirus ospy wietrznej i półpaśca (VZV) może aktywować wirusa opryszczki (HSV). Zwykle HSV-1, jeden z głównych wariantów tego wirusa, pozostaje uśpiony w neuronach, jeśli jednak zostanie aktywowany, prowadzi co akumulacji białka tau i beta amyloidu oraz utraty funkcji przez neurony. To zaś są cechy charakterystyczne rozwoju choroby Alzheimera.
      Uzyskane przez nas wyniki pokazują jedną z możliwych dróg rozwoju alzheimera, kiedy to infekcja VZV wywołuje stan zapalny prowadzący do aktywacji HSV w mózgu. Wykazaliśmy istnienie związku pomiędzy VZV i aktywacją HSV-1, ale możliwe, że istnieją jeszcze inne czynniki zapalne, które mogą prowadzić do aktywowania HSV-1 i choroby Alzheimera, mówi Dana Cairns z Tufts University.
      Profesor David Kaplan z Wydziału Inżynierii Biomedycznej jest jednym z twórców hipotezy o udziale wirusa opryszczki w rozwoju choroby Alzheimera. Ciężko pracowaliśmy, by zdobyć dowody na to, że HSV zwiększa ryzyko rozwoju alzheimera. Wiedzieliśmy, że istnieje korelacja pomiędzy HSV-1 a chorobą Alzheimera. Niektórzy specjaliści sugerowali, że jakiś udział ma też VZV, ale nie wiedzieliśmy, jaka jest sekwencja wydarzeń. Myślę, że teraz zdobyliśmy dowody ją opisujące, mówi Kaplan.
      WHO ocenia, że nosicielami HSV-1 jest około 3,7 miliarda osób poniżej 50. roku życia. Również VZV jest niezwykle rozpowszechniony, a 95% jego nosicieli zaraża się przed 20. rokiem życia.
      Naukowcy, chcąc opisać związek przyczynowo-skutkowy pomiędzy tymi wirusami a chorobą Alzheimera, odtworzyli środowisko tkanki mózgowej tworząc jej model z kolagenu i białek jedwabiu. Tak uzyskaną gąbczastą strukturę wypełnili neuronalnymi komórkami neuronalnymi, które utworzyły neurony i komórki gleju. Odkryli dzięki temu, że gdy neurony zostaną zarażone VZV nie dochodzi do tworzenia się białek tau i beta amyloidu, a neurony normalnie działają. Jednak gdy w neuronach znajduje się uśpiony HSV-1, to po wystawieniu neuronów na działanie VZV dochodzi do aktywacji HSV-1 i dramatycznego wzrostu ilości białek tau i beta amyloidu.
      Widzimy tutaj działanie dwóch powszechnie rozpowszechnionych wirusów, które zwykle są nieszkodliwe, ale z naszych badań wynika, że gdy nowa ekspozycja na VZV doprowadzi do aktywizacji HSV-1, może to spowodować problemy, stwierdza Cairns.
      Nie można wykluczyć, że istnieją jeszcze inne mechanizmy powodujące chorobę Alzheimera. Takie czynniki jak uraz głowy, otyłość czy spożywanie alkoholu również mogą prowadzić do aktywizacji HSV w mózgu, dodaje uczona.
      Naukowcy zaobserwowali, że w tkance zainfekowanej VZV pojawia się zwiększona ilość cytokin, skądinąd zaś wiadomo, że VZV wywołuje stan zapalny w mózgu. To zaś może aktywizować HSV, co dodatkowo zwiększy stan zapalny i doprowadzi do pojawienia się tau i beta amyloidu. Badania naukowców z Tufts i Oksfordu mogą też wyjaśniać, dlaczego szczepienia przeciwko VZV są powiązane z mniejszym ryzykiem rozwoju choroby Alzheimera.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...