Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Eksperymentalna metoda leczenia zakażeń gronkowcem neutralizuje bakteryjne toksyny

Recommended Posts

Uzyskane stosunkowo niedawno białka, centyryny, mogą zwalczać zakażenia wywołane przez gronkowca złocistego (Staphylococcus aureus). Warto przy tym pamiętać, że metycylinooporny gronkowiec złocisty (MRSA) znajduje się na liście bakterii, które wg WHO, w największym stopniu zagrażają ludzkiemu zdrowiu i najpilniej wymagają stworzenia nowych leków.

Zgodnie z naszym stanem wiedzy, to pierwszy raport, który pokazuje, że białka zwane centyrynami mogą potencjalnie blokować skutki ciężkich zakażeń S. aureus u myszy oraz podczas eksperymentów na ludzkich komórkach - podkreśla dr Victor Torres z NYU Langone Health.

Badanie przedkliniczne pokazało, że wybrana grupa centyryn zaburza działanie 5 toksyn, na których gronkowiec złocisty polega, wymykając się ludzkiemu układowi odpornościowemu i atakując tkanki. Oddziałując na aktywność bakterii bez ich niszczenia, nowa metoda pomaga zapobiegać lekooporności.

Jak tłumaczą autorzy publikacji z pisma Science Translational Medicine, centyryny są małymi rusztowaniami białkowymi, pozyskiwanymi z domeny fibronektyny typu III (ang. fibronectin type III domain, FN3) ludzkiego białka - tenasycyny C.

W ciągu lat badań Torres i inni stwierdzili, że S. aureus atakują, uwalniając cytolityczne toksyny. Jedną z nich, leukocydynę AB, odkryto zresztą w laboratorium Torresa. Toksyny te dziurawią komórki odpornościowe i niszczą je, nim mają one szansę zniszczyć bakterie.

W ramach najnowszych badań Amerykanie posłużyli się białkiem macierzystym centyryn i uzyskali bardzo liczny zbiór protein, które nieznacznie różniły się budową. Skryning tej biblioteki ujawnił 209 centyryn wiążących się z fragmentami 5 głównych leukotoksyn S. aureus (PVL, HlgAB, HlgCB, LukED i LukAB).

Podczas eksperymentów myszom podawano śmiertelną dawkę gronkowcowej toksyny LukED. Gryzonie, którym zawczasu zaaplikowano dawkę białka macierzystego (nieprzeznaczonego do wiązania z tą toksyną), zginęły. Osobniki, którym podano "celowaną" centyrynę SM1S26, przeżyły. Nawet wtedy, gdy przeciwtoksynową centyrynę podawano 4 godziny przed zakażeniem S. aureus - to scenariusz bardziej przypominający rzeczywistość kliniczną - przeżywało 50% zwierząt, w porównaniu do 0% w grupie kontrolnej.

Naukowcy pracują też nad rozwiązaniem, które łączy centryny z antystafylokokowymi przeciwciałami monoklonalnymi (ang. monoclonal antibodies, mABs) w nową klasę białek - MABtyryny. Mogą one skuteczniej neutralizować gronkowce złociste.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Bakterie z rodzaju Bacillus, które występują np. w probiotykach, pomagają eliminować wywołujące lekooporne infekcje gronkowce złociste (Staphylococcus aureus).
      Naukowcy z amerykańskiego Narodowego Instytutu Alergii i Chorób Zakaźnych odkryli, że bakterie Bacillus zapobiegają wzrostowi gronkowców w jelitach i jamie nosowej zdrowych osób. Później mechanizm zjawiska badano na myszach.
      Probiotyki często zaleca się jako metodę poprawy stanu zdrowia jelit. To [jednak] jedno z pierwszych badań opisujących dokładny mechanizm ich oddziaływania. Możliwość, że podane doustnie bakterie Bacillus są w pewnych przypadkach skuteczną alternatywą dla antybiotykoterapii, jest intrygująca naukowo i zdecydowanie warta dalszego badania - zaznacza dr Anthony S. Fauci.
      Rokrocznie infekcje gronkowcowe powodują dziesiątki tysięcy zgonów na całym świecie. Choć wiele osób zdaje sobie sprawę z zagrożeń stwarzanych przez metycylinooporne gronkowce złociste (MRSA od ang. methicillin-resistant Staphylococcus aureus), mało kto wie o tym, że S. aureus mogą żyć w jelicie czy nosie, nie powodując żadnych kłopotów. Wystarczy jednak zranienie lub upośledzenie odporności i sytuacja zmienia się diametralnie.
      Jedną z metod zapobiegania zakażeniom stafylokokowym jest dekolonizacja. Pewne strategie dekolonizacji budzą jednak kontrowersje, bo wymagają miejscowego stosowania dużych ilości antybiotyku i mają ograniczoną skuteczność (dzieje się tak po części dlatego, że obierają one na cel tylko nos i bakterie szybko rekolonizują jelito).
      W ramach najnowszego studium Amerykanie i współpracownicy z Rajamangala University of Technology oraz Mahidol University zebrali 200 ochotników z wiejskich obszarów Tajlandii (miała to być populacja w mniejszym stopniu dotknięta sterylizacją żywności czy antybiotykami niż ludzie z miast). Na początku zbadano próbki kału; szukano bakterii skorelowanych z nieobecnością S. aureus. Znaleziono 101 próbek Bacillus-dodatnich. Były to głównie laseczki sienne (B. subtilis), które występują z innymi bakteriami w wielu probiotykach.
      Bakterie Bacillus tworzą spory, które mogą przetrwać trudne warunki. Są one często spożywanie z warzywami, dzięki czemu mogą czasowo rosnąć w jelicie.
      Później akademicy próbkowali tych samych ludzi pod kątem występowania gronkowców w jelitach i nosie. Wykryto je w, odpowiednio, 25 i 26 przypadkach. S. aureus nie było jednak w żadnej Bacillus-dodatniej próbce.
      Podczas badań na myszach naukowcy wykryli u S. aureus system detekcyjny, który musi działać, by zachodził wzrost w jelicie. Co ważne, wszystkie z ponad 100 uzyskanych z kału izolatów bakterii Bacillus skutecznie go hamowały. Za pomocą chromatografii/spektrometrii mas autorzy publikacji z Nature odkryli, że hamowanie układu detekcyjnego gronkowców zachodzi dzięki fengicynom.
      Dalsze testy pokazały, że fengicyny działają w ten sam sposób na kilka szczepów S. aureus, w tym na pewien szczep wysokiego ryzyka - USA300 MRSA.
      By w jeszcze inny sposób potwierdzić uzyskane wyniki, Amerykanie podawali zakażonym gronkowcem złocistym myszom spory B. subtilis (miało to naśladować spożycie probiotyku). Okazało się, że aplikowanie ich co drugi dzień doprowadziło do wyeliminowania S. aureus z jelit. Gdy gryzoniom podawano bakterie Bacillus, które nie mogły wytwarzać fengicyn, nic się nie działo i wzrost S. aureus nadal zachodził.
      W najbliższej przyszłości Amerykanie zamierzają sprawdzić, czy probiotyki zawierające B. subtilis mogą wyeliminować S. aureus u ludzi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z francuskiego Narodowego Centrum Badań Naukowych (CNRS - Centre national de la recherche scientifique) oraz Instytutu Pasteura zidentyfikowali u gronkowca złocistego (Staphylococcus aureus) gen związany ze zjadliwością, a także tworzeniem biofilmu i rozwojem oporności na pewne antybiotyki.
      Do najgroźniejszych należą szczepy gronkowca, które wykazują oporność na liczne antybiotyki. Jednym z nich jest metycylinooporny gronkowiec złocisty (MRSA, od ang. methicillin-resistant Staphylococcus aureus); szczepy MRSA są bowiem oporne na wszystkie antybiotyki β-laktamowe.
      Zespół Tareka Msadeka z Instytutu Pasteura analizuje reakcje bakteryjne na zmiany środowiskowe. Okazuje się, że są one często genetycznie kontrolowane przez 2-elementowe systemy. Badając jeden z takich systemów (WalKR, który jest niezbędny dla przeżycia bakterii), Francuzi scharakteryzowali dodatkowy komponent SpdC, białko błonowe o nieznanej dotąd roli.
      Element ten wchodzi w interakcje z systemem WalKR, a konkretnie kontroluje jego aktywność. Brak SpdC prowadzi do silnych spadków zjadliwości i oporności na pewne antybiotyki oraz ograniczenia tworzenia biofilmów.
      Autorzy publikacji z pisma PLoS Pathogens uważają, że hamowanie SpdC można wykorzystać do zwalczania zakażeń gronkowcem złocistym oraz do zrozumienia mechanizmów leżących u podłoża przejścia od nieszkodliwego organizmu komensalnego do patogenu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Infekcje szpitalne, powodowane przez oporne na działanie licznych antybiotyków bakterie, są coraz poważniejszym problemem na całym świecie. Doktor Jes Gitz Holler z Uniwersytetu w Kopenhadze odkrył w chilijskich tropikach substancję, która pomoże zwalczać gronkowca złocistego (Staphylococcus aureus).
      W chilijskim awokado znalazłem substancję, która daje dobre efekty w połączeniu z tradycyjnymi antybiotykami. Bakteria posiada w membranie mechanizm, który wypomowywuje z jej wnętrza antybiotyk natychmiast po tym, jak się do niego dostanie. Zidentyfikowałem substancję, która powstrzymuje wypompowywanie, zatem mechanizm obrony bakterii zostaje zniszczony i antybiotyk może działać - wyjaśnia uczony.
      Na ślad leczniczej rośliny naprowadzili Hollera rdzenni Mapuche, którzy używają jej liści do leczenia ran.
      Do określenia minimalnego stężenia potrzebnego do hamującego wzrostu drobnoustrojów używa się wskaźnika MIC (Minimal Inhibitory Concentration - minimalne stężenie hamujące). Dzięki odkrytej przez Hollera substancji wartość MIC można obniżyć w przypadku gronkowca co najmniej ośmiokrotnie. Ten naturalny składnik ma wielki potencjał i niewykluczone, że można go będzie wykorzystać do zwalczania opornych szczepów gronkowca. Obecnie na rynku nie ma produktów, które atakowałyby wspomniany mechanizm obronny. Chcemy zwiększyć efektywność substancji. To pozwoli na produkcję syntetycznych leków i ochroni lasy deszczowe - mówi naukowiec.
      Holler twierdzi, że jeśli lekarstwo trafi na rynek, to skorzystają na tym również Mapuche. Już podpisano odpowiednie umowy pomiędzy Wydziałem Zdrowia i Medycyny, a przedstawicielem ludu, doktorem Alfonso Guzmanem.
      Odkrycie Hollera dowodzi, jak istotna jest ochrona ekosystemów. Niszcząc je możemy utracić nierozpoznane jeszcze substancje, które mogą uwolnić ludzkość od wielu chorób.
    • By KopalniaWiedzy.pl
      U niektórych pacjentów z implantami kardiologicznymi (sztucznymi zastawkami, rozrusznikami itp.) rozwija się groźne niekiedy dla życia zakażenie krwi, ponieważ bakterie w ich organizmie mają zmutowany gen, ułatwiający im tworzenie biofilmu na urządzeniu.
      Zespół z Uniwersytetu Stanowego Ohio i Centrum Medycznego Duke University, który pracował pod przewodnictwem m.in. prof. Stevena Lowera, zauważył, że pewne szczepy gronkowca złocistego (Staphylococcus aureus) dysponują kilkoma wariantami białek powierzchniowych, ułatwiającymi tworzenie biofilmów. Ponieważ biofilmy są antybiotykooporne, jedynym wyjściem było do tej pory chirurgiczne usunięcie implantu i zastąpienie go nowym.
      Chcąc ograniczyć liczbę zakażeń i kosztowność wdrażanych procedur, Amerykanie przeprowadzili eksperymenty z wykorzystaniem mikroskopu sił atomowych i symulacji komputerowych. Sprawdzali, w jaki sposób bakterie przylegają do urządzeń, by utworzyć biofilm. Gdy proces zostanie uruchomiony, białka powierzchniowe bakterii łączą się z pokrywającym implant białkami surowicy ludzkiej krwi. Skoro jednak gronkowce znajdują się w nosie niemal połowy Amerykanów, czemu nie każdy pacjent przechodzi zakażenie? Czemu niektóre szczepy powodują infekcję, a niektóre pozostają uśpione? Naukowcy odkryli, że białka powierzchniowe gronkowców z 3 polimorfizmami pojedynczego nukleotydu (ang. single nucleotide polymorphism, SNP) wiązały się z białkami surowicy mocniej niż u pacjentów z gronkowcami z innymi wariantami proteiny.
      Wielu specjalistów pracuje nad materiałami, które nie dopuszczą do związania bakterii, do problemu można jednak podejść od innej strony - od strony samych bakterii.
      Prof. Vance Fowler z Duke University dysponuje biblioteką izolatów S. aureus. Naukowcy mają nadzieję, że dzięki niej uda się lepiej poznać oddziaływania między powierzchniami nieożywionymi a żywymi mikroorganizmami na poziomie molekularnym. W ramach najnowszego studium międzyuczelniany zespół badał 80 izolatów z 3 źródeł: 1) od pacjentów z zakażeniem krwi i potwierdzonym zakażeniem implantu kardiologicznego, 2) od pacjentów z zakażeniem krwi i niezakażonym urządzeniem oraz 3) z nosa zdrowych osób zamieszkujących ten sam obszar. Dr Nadia Casillas-Ituarte doprowadzała do związania pojedynczego gronkowca z fibronektyną pokrywającą powierzchnię skanującej sondy mikroskopu AFM (bakterie wykorzystują do tego adhezynę - białko wiążące fibronektynę A). Później próbowała je rozdzielić i zmierzyć siłę każdego połączenia.
      Jak dokładnie przebiegał eksperyment? Akademicy symulowali bicie ludzkiego serca, pozwalając, by na krótki moment doszło do związania. Później dźwigienkę podrywano, przeprowadzając taki zabieg co najmniej 100-krotnie na każdej komórce. Określano też działanie okolicznych komórek. W ten sposób powstał wykres dla ok. 250 tys. z nich. Pierwszym krokiem jest ustalenie, jak bakterie czują powierzchnię. Można zahamować ten proces, jeśli najpierw się go zrozumie - podkreśla Casillas-Ituarte.
      W kolejnym etapie badań naukowcy zsekwencjonowali aminokwasy wchodzące w skład białka wiążącego fibronektynę A ze wszystkich wykorzystanych izolatów. W ten właśnie sposób zidentyfikowali SNP charakterystyczne dla próbek pobranych od pacjentów z zakażeniami implantów kariologicznych. Symulacje komputerowe pokazały tworzenie się wiązań między białkami bakteryjnymi i ludzkimi. Przy standardowych sekwencjach białek cząsteczki trzymały się na dystans. Kiedy jednak zmieniono sekwencję 3 aminokwasów w bakteryjnym białku powierzchniowym, między białkami gronkowca i człowieka tworzyło się wiązanie wodorowe.
      Zmieniliśmy aminokwasy w taki sposób, by przypominały SNP zidentyfikowane u gronkowców od pacjentów z zakażeniami implantów. Wydaje się zatem, że SNP mają związek z tym, czy wiązanie się wytworzy, czy nie - tłumaczy Lower.
      Białko wiążące fibronektynę A jest jednym z ok. 10 białek powierzchniowych S. aureus, które tworzą wiązania z białkami komórki gospodarza. W przyszłości trzeba się więc będzie skupić na pozostałych. Nie można też wykluczyć, że istnieją warianty fibronektyny, które przyczyniają się do opisanego problemu.
    • By KopalniaWiedzy.pl
      Samce kaczki krzyżówki przez cały rok, nie tylko w szacie godowej, mają kolorowy dziób. W zależności od ilości barwnika (karotenoidu) może on być jaskrawo żółty lub zaledwie bladozielonkawy. Okazuje się, że samice wolą partnerów z odważnie ubarwionym dziobem, ponieważ ich sperma wykazuje silniejsze właściwości bakteriobójcze.
      Dr Melissah Rowe z Uniwersytetu w Oslo zebrała 11 próbek nasienia od trzymanych w niewoli kaczorów. Do badań wybrała osobniki o zróżnicowanym zabarwieniu dzioba. Norweżka chciała sprawdzić, jakie zabezpieczenia przed bakteryjnym uszkodzeniem plemników funkcjonują u krzyżówek.
      Nasienie kaczorów z jaskrawo ubarwionymi dziobami silniej hamowało wzrost Escherichia coli, co oznacza, że wykazując upodobanie do żółtodziobych samców, samice wybierają de facto do spółkowania partnerów, którzy z mniejszym prawdopodobieństwem są nosicielami pałeczki okrężnicy. Ejakulat wszystkich samców, bez względu na kolor dzioba, hamował wzrost gronkowca złocistego (Staphylococcus aureus).
      Norwegowie chwalą się, że jako pierwsi zademonstrowali antybakteryjne właściwości spermy ptaków. Wcześniejsze badania wykazały, że plemniki najbardziej kolorowych samców są lepszej jakości i szybciej się poruszają.
      Na razie nie wiadomo, jaki wpływ na kaczą spermę mają pałeczki okrężnicy (w przypadku ludzi niekorzystnie oddziałują na jakość oraz żywotność plemników). W kolejnych etapach badań trzeba też będzie ustalić, czy zakażenie E. coli przenosi się u krzyżówek drogą płciową i co najważniejsze, jaki składnik nasienia odpowiada za jego właściwości antybakteryjne. Ze szczegółowymi wynikami dotychczasowych eksperymentów można się zapoznać na łamach pisma Biology Letters.
×
×
  • Create New...