Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

W przyszłości Słońce zamieni się w kryształ

Recommended Posts

Naukowcy z University of Warwick zdobyli pierwsze bezpośrednie dowody wskazujące, że białe karły – a taką gwiazdą stanie się Słońce po swej śmierci – ulegają krystalizacji, a na nieboskłon pełen jest takich olbrzymich kryształów.

Dokonane przez astronomów obserwacje wskazują, że jądra białych karłów są zbudowane z zestalonego tlenu i węgla, które przeszły przemianę fazową podobną do tej, jaką przechodzi woda zamieniająca się w lód. Proces odbywa się, oczywiście, w znacznie wyższej temperaturze. Ponadto krystalizacja spowalnia stygnięcie gwiazd, a to oznacza, że niektóre białe karły mogą być o miliardy lat starsze niż się obecnie przypuszcza.

Najnowszego odkrycia dokonał zespół doktora Piera-Emmanuela Tremblaya, który korzystał głównie z danych dostarczonych przez satelitę Gaia Europejskiej Agencji Kosmicznej.

Białe karły należą do najstarszych gwiazd we wszechświecie. Są bardzo użyteczne, gdyż astronomowie potrafią obliczać ich wiek, przez co można wykorzystywać je w roli kosmicznych zegarów do szacowania wieku pobliskich gwiazd.
Białe karły powstają po ustaniu reakcji jądrowych w gwiazdach o małej lub średniej masie. Gwiazdy o masie Słońca zamieniają się z czasem w białe karły węglowe lub węglowo-tlenowe.

Pier-Emmanuel Tremblay i jego zespól wybrali 15 000 białych karłów znajdujących się w odległości do około 300 lat świetlnych od Ziemi i przeanalizowali dane dotyczące ich jasności i koloru. Odkryli nadmiar gwiazd o specyficznej jasności i kolorze, których nie można było dopasować ani do grupy o tym samym wieku, ani masie. Gdy przyjrzeli się następnie modelom ewolucji gwiazd okazało się, że dobrze pasują one wysuniętej przed 50 laty hipotezy o możliwości krystalizacji białych karłów. Krystalizacja opóźnia stygnięcie gwiazdy i uczeni z Warwick wyliczyli, że niektóre z białych karłów mogą być nawet o 2 miliardy lat starsze, niż wynikałoby to z ich temperatury.

Wszystkie białe karły krystalizują w pewnym momencie swojej ewolucji. To oznacza, że w naszej galaktyce istnieją miliardy krystalicznych sfer. Samo Słońce stanie się skrystalizowanym białym karłem za około 10 miliardów lat, mówi Tremblay.

W jądrach białych karłów panuje niezwykle wysokie ciśnienie, przez co tworzący je gaz staje się cieczą. Gdy temperatura jądra spadnie do około 10 milionów stopni Celsjusza, rozpoczyna się proces krystalizacji.

Nie tylko zdobyliśmy dowody na energię wydzielaną w procesie krystalizacji, ale zauważyliśmy, że do wyjaśnienia tych zjawisk potrzeba przyjęcia znacznie większego uwalniania energii niż zakładano. Sądzimy, że dzieje się tak, gdyż najpierw krystalizuje tlen, który tonie w rdzeniu. To proces podobny do tworzenia się osadów na dnie rzek. Tonący tlen wypych w górę węgiel i to właśnie ten proces uwalnia dodatkową energię, mówi Tremblay.

Uczony dodaje, że teraz zyskaliśmy dodatkowe dane, które pozwolą lepiej ocenić wiek białych karłów oraz innych gwiazd. Dzięki precyzyjnym pomiarom rozumiemy budowę wnętrza białych karłów tak dobrze, jak nigdy wcześniej. Przed Gaią mieliśmy dokładne dane o odległości i jasności 100-200 białych karłów. Teraz mamy takie dane o 200 000 takich gwiazd.


« powrót do artykułu

Share this post


Link to post
Share on other sites

To nie jest węgiel kamienny ani tym bardziej brunatny. To bardziej grafit lub nawet diament.

Share this post


Link to post
Share on other sites
6 godzin temu, ex nihilo napisał:

Nie szkodzi, też sie pali

Nie ciesz się. Nic z tego. Zakładając, że karzełek będzie miał połowę masy i połowę promienia naszego Słońca, wyniesienie Mg ładunku na 100 km to jakieś 50 GJ. Cała entalpia tworzenia dwutlenku węgla to jakieś 40 GJ/Mg -  ja tu, siostry, duże manko w dżulach widzę :D Jak zwykle polecam własnoręczne policzenie ;)

edit: Tak mi przyszło do głowy... Mamy tam tlen i węgiel, jakby tak na powierzchni rozpalić ognisko to moglibyśmy się cieszyć ciepłem jeszcze przez jakiś czas. Wystarczy lokalnie na powierzchni wytworzyć coś w okolicach warunków normalnych i karzeł powinien się palić jak świeczka :D

 

 

Edited by Jajcenty

Share this post


Link to post
Share on other sites

Połowa promienia Słońca? Toż to nie może być biały karzeł, one mają zdecydowanie mniejsze rozmiary.Widzę tu jeszcze większe manko.

Nie przekreślałbym jednak światłej myśli technologicznej. W końcu diament można spalać lokalnie, a energię słać choćby fotonami. Cóż z tego, że się grawitacyjnie nieco zaczerwienią? Stać nas będzie, a co!

Share this post


Link to post
Share on other sites
11 godzin temu, Jajcenty napisał:

wyniesienie Mg ładunku na 100 km to jakieś 50 GJ. Cała entalpia tworzenia dwutlenku węgla to jakieś 40 GJ/Mg -  ja tu, siostry, duże manko w dżulach widzę :D 

Siostry widzą (przypuszczam:D)  sens jubilerski, a nie energetyczny .  Chłopakom wyszło manko, a dziewczynki zysk będą miały.:P

Edited by 3grosze

Share this post


Link to post
Share on other sites
42 minuty temu, 3grosze napisał:

Chłopakom wyszło manko, a dziewczynki zysk będą miały

tylko problem jest w tym, że dziewczynki zawsze pożądają coś co jest rzadkie i trudno dostępne. Więc jakby ziemskie plaże byłyby skupiskiem błyszczących diamentów to nawet by się nie schyliły po takie byle co.

 

5 godzin temu, Szedar napisał:

W końcu diament można spalać lokalnie, a energię słać choćby fotonami

przecież białe karły ciągle mocno promieniują. trochę w innych zakresach i skóra by schodziła razem z kośćmi , ale zawsze można przekonwertować na spokojniejsze fotony już na ziemi.

Share this post


Link to post
Share on other sites

Słońce będzie najpiękniejszym diamentem w historii wszechświata,a może nawet i wieloświata,będzie się świecić przez ogromną część czasu w kosmosie,a może będzie jednym z 400 miliardów gwiazd z takim blaskiem,najpierw stanie się białym, a potem carnym karłem i będzie świecić tak długo,dopóki nie skończą sie pierwsiastki do zasilenia diamentowego Słońca!!!!

Share this post


Link to post
Share on other sites
W dniu 12.01.2019 o 09:52, tempik napisał:

przecież białe karły ciągle mocno promieniują. trochę w innych zakresach i skóra by schodziła razem z kośćmi , ale zawsze można przekonwertować na spokojniejsze fotony już na ziemi.

Chodzi o te karły co już są trochę wystudzone, czyli czarne. Ratujemy górnictwo i energetykę węglową :) Mówią, że czarnych jeszcze nie ma, ale ja sądzę, że nie obserwujemy ich bo okazuje się, że są czorne od wungla! 

Share this post


Link to post
Share on other sites
15 minut temu, Jajcenty napisał:

Chodzi o te karły co już są trochę wystudzone

Jeśli przez te parę mld lat wnętrze ziemi niewiele ostygło, to chyba o wiele masywniejszy biały karzeł startujący z dużo większej temperatury nie ma szans żeby ostygnąć.  Trochę zabawne są te gwiazdy. Mają czysty węgiel i czysty tlen ale nie mogą wybuchnąć czy chociaż spalić się jak w piecu bo jest za gorąco i za duże ciśnienie :)

Share this post


Link to post
Share on other sites
W dniu 12.01.2019 o 04:02, Szedar napisał:

W końcu diament można spalać lokalnie, a energię słać choćby fotonami.

Do spalania diamentu będzie potrzebny tlen, ten zaś znajduje się w rdzeniu. Do jego wydobycia potrzebna będzie znacznie większa energia niż ta, którą się uzyska chemicznie :(

W dniu 12.01.2019 o 09:52, tempik napisał:

tylko problem jest w tym, że dziewczynki zawsze pożądają coś co jest rzadkie i trudno dostępne

W tym wypadku, po schyleniu się, dziewczynka mogłaby się już nie wyprostować, ponieważ ciążenie będzie tam nieco większe niż na Ziemi. Z drugiej strony, możliwe, że taki biały karzeł będzie celem wypraw kondycyjnych. Już samo leżenie na powierzchni może spłaszczyć lepiej niż jakakolwiek ziemska kuracja odchudzająca :D

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


  • Similar Content

    • By KopalniaWiedzy.pl
      Podczas formowania się Układu Słonecznego mogło dość często dochodzić do zderzeń tworzących się planet. Podczas jednej z takich kolizji powstał ziemski Księżyc. Jednak to, co spotkało Jowisza jest czymś wyjątkowym.
      Astronomowie z amerykańskiego Rice University i chińskiego Uniwersytetu Sun Jat-sena uważaja, że znaleźli wyjaśnienie dziwnych wyników pomiarów pola grawitacyjnego Jowisza dostarczonych przez sondę Juno.
      Wiodące teorie dotyczące formowania się planet mówią, że Jowisz rozpoczął swoje życie jako gęsta skalista lub lodowa planeta i z czasem zyskał olbrzymią warstwę bardzo gęstej atmosfery złożonej z gazów i pyłów z rodzącego się Układu Słonecznego. Jednak odczyty z Juno wskazują, że jądro Jowisza jest znacznie większe i mniej gęste, niż w takim scenariuszu. To było zastanawiające. Wskazywało, że coś się stało z jądrem. W grę wchodzi wielka kolizja, mówi współautor badań Andrea Isella z Rice University.
      Uczony przyznaje, że bardzo sceptycznie podszedł do hipotezy głównego autora badań, Shanga-Fei Liu, mówiącej o zderzeniu, które rozbiło jądro Jowisza i wymieszało je z rzadszymi częściami planety. To brzmiało bardzo nieprawdopodobnie. Jednak Shang-Fei przekonał mnie, za pomocą wielu obliczeń, że nie jest to nieprawdopodobne, stwierdził Isella.
      Naukowcy przeprowadzili tysiące symulacji komputerowych i stwierdzili, że szybko rosnący Jowisz zaburzył orbity pobliskich protoplanet. Uruchomiono więc kolejne symulacje, by sprawdzić, jakie – w różnych warunkach – było prawdopodobieństwo, że doszło do kolizji. Okazało się, że podczas pierwszych kilku milionów lat swojego istnienia Jowisz mógł z co najmniej 40-procentowym prawdopodobieństwem zderzyć się z rodzącą się planetą i ją wchłonął. Modelowanie komputerowe wykazało, że gdyby Jowisz wciągnął planetę o masę Ziemi, opadałaby ona na jego jądro i rozpadłaby się w gęstej atmosferze. Jądro Jowisza pozostałoby nietknięte. Jedyny scenariusz, wyjaśniający, dlaczego obecnie jądro Jowisza wygląda tak, jak obecnie, zakłada, że protoplaneta, z którą się zderzył, miała masę około 10-krotnie większą od masy Ziemi, mówi Liu.
      Obliczenia wskazują, że tak masywna protoplaneta rozbiła jądro Jowisza. Jeśli nawet do tego wydarzenia doszło 4,5 miliarda lat temu, to potrzeba będzie kolejnych miliardów lat, by jądro Jowisza powróciło do stanu sprzed zderzenia, mówi Isella.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Eksperymentalny żaglowiec kosmiczny rozwinął żagle i zaczął zbierać energię Słońca, która ma go napędzać podczas podróży w przestrzeni kosmicznej. LightSail 2 to dzieło The Planetary Society. Pojazd został wystrzelony 25 czerwca na pokładzie rakiety Falcon Heavy firmy SpaceX. Właśnie otworzył niewielkie przedziały i rozwinął żagle. Każdy z nich ma grubość 4,5 mikrometra, a łączna powierzchnia żagli wynosi 32 metry kwadratowe.
      Gdy fotony ze Słońca trafiają na żagiel, odbijają się od niego, przekazując mu niewielką ilość energii, która popycha pojazd. Siła oddziałująca na żagiel jest niewielka, jedna z czasem pęd będzie się dodawał i zacznie przyspieszać pojazd.
      Poprzednikiem obecnego żaglowca był LightSail 1. Rozwinął on żagle w 2015 roku, jednak przed spłonięciem w atmosferze nie wykonał żadnych kontrolowanych manewrów. Teraz ma się to zmienić. LightSail 2 został umieszczony na wyższej orbicie, zatem atmosfera mniej na niego oddziałuje. Ma krążyć nad Ziemią nawet przez rok.
      W przyszłości żagle mogą okazać się dobrym napędem dla niewielkich satelitów przemierzających Układ Słoneczny. Nie wymagają one wielkich ilości paliwa, jakie trzeba umieszczać na pokładach tradycyjnych satelitów. Mimo, że żaglowce słoneczne mają niewielkie przyspieszenie to, teoretycznie, z czasem powinny rozpędzać się do imponujących prędkości.
      Żagle kosmiczne nie muszą być też napędzane przez Słońce. Pojawiły się propozycje napędzania ich za pomocą promieni laserowych. Dzięki temu pojazdy przyspieszałyby znacznie szybciej, być może na tyle szybko, że udałoby się je wysłać w podróż pomiędzy gwiazdami.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W krajach o niskim dochodzie gruźlica pozostaje jedną z najbardziej śmiertelnych chorób zakaźnych. Każdego roku umiera na nią ok. 1,6 mln osób. W nowym badaniu wykazano, że wystawione na oddziaływanie słońca boczniaki ostrygowate stanowią szybko dostępne źródło witaminy D, a ta sprawia, że ludzie lepiej reagują na leki przeciwgruźlicze (poprawia się ich odpowiedź immunologiczna).
      Przez pojawienie się lekoopornych szczepów gruźlica staje się trudniejsza do zwalczenia. Pilnie potrzeba nowych metod, które wesprą leki pierwszego rzutu. Źródło witaminy D w postaci grzybów jest idealne dla biednych krajów, ponieważ grzyby można bez problemu dystrybuować i administrować w bezpieczny, tani i łatwy do powtórzenia sposób - dowodzi dr TibebeSelassie Seyoum Keflie z Uniwersytetu Hohenheim.
      Wcześniejsze badania pokazały, że witamina D sprawia, że organizm wytwarza związki antydrobnoustrojowe zwalczające prątki gruźlicy.
      To pierwszy raz, gdy wykazano, że witamina D pozyskana z boczniaków wystawionych na oddziaływanie słońca może zostać wykorzystana w ramach terapii pomocniczej gruźlicy. Naukowcy snują plany, że w przyszłości można by edukować pacjentów z gruźlicą, by przed gotowaniem przez krótki czas "naświetlali" grzyby; świeże Pleurotus ostreatus prawie nie zawierają witaminy D, jednak na ekspozycję słoneczną reagują podobnie jak ludzkie ciało: produkcją tego cennego związku.
      W ramach studium 32-osobowej grupie chorych z gruźlicą z Etiopii przez 4 pierwsze miesiące leczenia co rano od poniedziałku do piątku podawano boczniakowy chleb zawierający 146 mikrogramów (5840 IU) witaminy D2. Uwzględniono też równoliczną grupę kontrolną. Na początku i pod koniec studium pobierano próbki krwi i plwociny.
      Po 4 miesiącach aż 96,9% pacjentów jedzących ten chleb zaklasyfikowano do najniższej kategorii nasilenia choroby (w skali od 1 do 5). Grupę eksperymentalną cechował też znacząco wyższy poziom witaminy D; ponad 35% osób nie miało już niedoboru.
      Oprócz tego naukowcy zaobserwowali, że w ciągu 4 miesięcy ludzie jedzący wzbogacony chleb wykazywali poprawę w zakresie odpowiedzi immunologicznej. Tylko w grupie interwencyjnej zaobserwowano wzrost poziomu interferonu gamma i katelicydyny (aktywnego peptydu LL-37).
      Zespół planuje badania na większej i bardziej zróżnicowanej grupie. Pracuje również nad alternatywnymi metodami suszenia grzybów, które pozwolą zmaksymalizować ilość witaminy D.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zderzenia jąder ołowiu zachodzą w ekstremalnych warunkach fizycznych. Ich przebieg można opisać za pomocą modelu zakładającego, że przekształcająca się, ekstremalnie gorąca materia – plazma kwarkowo-gluonowa – płynie w postaci setek smug. Dotychczas „ogniste smugi” wydawały się konstrukcjami czysto teoretycznymi. Jednak najnowsza analiza zderzeń pojedynczych protonów wzmacnia tezę, że odpowiada im rzeczywiste zjawisko.
      W 2017 roku fizycy z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie przedstawili przemawiający do wyobraźni model zjawisk zachodzących w trakcie zderzeń jąder ołowiu przy wysokich energiach. W modelu założono, że powstająca w zderzeniach egzotyczna materia, plazma kwarkowo-gluonowa, oddala się od miejsca kolizji w formie licznych smug, rozciągniętych wzdłuż pierwotnego kierunku ruchu jąder. Smugi te powinny poruszać się tym szybciej, im bardziej są odległe od osi zderzenia. Obecnie badacze zastosowali model „smug ognistych” do znacznie prostszych zderzeń proton-proton. Gdy porównali swoje przewidywania z danymi zebranymi w eksperymentach w europejskim ośrodku badań jądrowych CERN, czekała ich nie lada niespodzianka.
      Jądra ołowiu zawierają ponad dwieście protonów i neutronów. Gdy dwa tak duże obiekty się zderzają, przy odpowiednio wielkich energiach powstaje płynna mieszanina kwarków i gluonów (cząstek w normalnych warunkach zlepiających kwarki w protony i neutrony). Plazma kwarkowogluonowa błyskawicznie ekspanduje i równocześnie się wychładza. W rezultacie istnieje tak krótko i w tak małym obszarze przestrzeni (o rozmiarach zaledwie setek milionowych części jednej miliardowej metra), że nie potrafimy jej bezpośrednio obserwować. Na dodatek interakcje między cząstkami plazmy są zdominowane przez oddziaływania silne i są tak skomplikowane, że z ich opisem współczesna fizyka po prostu sobie nie radzi. Ślady plazmy kwarkowo-gluonowej widać tylko pośrednio, w cząstkach wybiegających z miejsca zderzenia. Teoria przewiduje bowiem, że jeśli plazma kwarkowo-gluonowa rzeczywiście się wytworzyła, detektory powinny rejestrować wyraźnie większą liczbę cząstek dziwnych (a więc takich, które zawierają kwarki dziwne s).
      Zderzenia proton-proton w akceleratorach w CERN produkują mało cząstek dziwnych. Powszechnie przyjmuje się więc, że w ich trakcie plazma kwarkowo-gluonowa nie powstaje. Uwzględniliśmy ten fakt w naszym modelu smug ognistych, po czym skonfrontowaliśmy jego przewidywania z danymi z eksperymentu NA49 na akceleratorze SPS. Zgodność była zdumiewająco dobra. Można więc powiedzieć, że teraz 'zobaczyliśmy' smugę ognistą w jakościowo innych warunkach fizycznych, tam, gdzie w ogóle się jej nie spodziewaliśmy!, tłumaczy dr hab. Andrzej Rybicki (IFJ PAN), jeden z autorów publikacji w czasopiśmie Physical Review C.
      Kolizję dwóch jąder ołowiu musieliśmy modelować jako złożenie kilkuset smug. W takich warunkach trudno powiedzieć cokolwiek o własnościach pojedynczej smugi. Jednak gdy z modelu wyekstrahowaliśmy rozkład pospieszności, czyli relatywistycznej prędkości cząstek produkowanych przez pojedynczą smugę, okazało się, że jej kształt bardzo dobrze opisuje prawdziwe dane z pomiarów produkcji cząstek w zderzeniach proton-proton!, precyzuje mgr Mirek Kiełbowicz, doktorant IFJ PAN.
      Aby wykresy, otrzymane za pomocą modelu smug ognistych zbudowanego dla zderzeń jąder ołowiu, zgadzały się z danymi eksperymentalnymi dla zderzeń proton-proton, należało je przeskalować o czynnik 0,748. Krakowscy badacze wykazali, że parametr ten nie jest swobodny. Pojawia się on po uwzględnieniu w bilansie energetycznym zmian związanych z różną produkcją cząstek dziwnych i można go odtworzyć z danych eksperymentalnych. Był to kolejny silny argument wzmacniający fizyczną poprawność modelu.
      Pracuję nad modelem smug ognistych w ramach mojej pracy magisterskiej, więc nie zdziwiło mnie, że opisuje on dane ze zderzeń jądro-jądro w sporym zakresie energii. Kiedy jednak zobaczyłem, że wyekstrahowana przez nas funkcja fragmentacji tak dobrze zgadza się z danymi ze zderzeń proton-proton, trudno było ukryć zaskoczenie, wspomina Łukasz Rozpłochowski, student Uniwersytetu Jagiellońskiego współpracujący z grupą z IFJ PAN.
      Materia powstająca w zderzeniach proton-proton, chłodniejsza i jakościowo inna niż plazma kwarkowo-gluonowa, wydaje się więc zachowywać jak pojedyncza ognista smuga. Jej pewne własności – takie jak prędkości emitowanych cząstek czy sposoby ich rozpadów – z jakiegoś powodu są zdumiewająco podobne do własności ognistych smug plazmy kwarkowo-gluonowej. A ponieważ plazma kwarkowo-gluonowa tworzy się przy większych energiach i w zderzeniach obiektów kwantowych o dużej złożoności, uprawnione staje się stwierdzenie, że to ona dziedziczy niektóre cechy materii formującej ogniste smugi w zderzeniach proton-proton.
      Gdy opisywaliśmy zderzenia jądro-jądro, ogniste smugi były dla nas jedynie pewnymi abstrakcyjnymi konstrukcjami, czymś czysto teoretycznym. Nie wnikaliśmy w ich fizyczną naturę, w to, czym mogą być w rzeczywistości. Przeżyliśmy prawdziwy wstrząs, gdy zestawiając dane eksperymentalne z naszym modelem odkryliśmy, że to, co powstaje w zderzeniach proton-proton, zachowuje się dokładnie tak jak nasza pojedyncza ognista smuga, podsumowuje dr Rybicki.
      Wyniki najnowszej analizy, przeprowadzonej przez krakowskich fizyków w ramach grantu SONATA BIS nr 2014/14/E/ST2/00018 Narodowego Centrum Nauki, wzmacniają zatem przypuszczenie, że ognistym smugom, wedle teorii formującym się w zderzeniach proton-proton i jądro-jądro, odpowiadają rzeczywiste procesy fizyczne zachodzące w przepływach ekstremalnie gorącej materii kwantowej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Niektóre asteroidy są bardzo gęste, składają się z żelaza i niklu. Naukowcy sądzą, że są one pozostałościami po jądrach dużych ciał niebieskich, które rozpadły się w wyniku kolizji. Są niezwykle stare, przez miliardy lat mogły być ukryte tysiące kilometrów pod powierzchnią planet. Ich zbadanie może przynieść olbrzymią ilość nowych informacji na temat wszechświata i Układu Słonecznego.
      Dlatego też NASA planuje misję na tego typu asteroidę. Jej celem będzie Psyche, największa metaliczna asteroida krążąca wokół Słońca. Misja ma wystartować nie wcześniej niż w 2022 roku, a jej celem będzie dotarcie na orbitę i dokładne zbadanie 226-kilometrowego obiektu. Na miejscu sonda może trafić na niezwykle egzotyczne zjawisko, krajobraz ukształtowany przez ferrowulkanizm, czyli erupcje płynnego żelaza, do których dochodziło, gdy stygł odłupany od planety fragment jądra.
      Ekspertom jeszcze nigdy nie udało się zaobserwować ferrowulkanizmu. Zdobycie dowodów na to, że rzeczywiście miał on miejsce na Psyche może na nowo napisać historię jąder planetarnych i odpowiedzieć na wiele pytań z dziedziny geofizyki. Lindy Elkins-Tanton, główna badaczka misji Psyche, mówi, że wraz z zespołem zamierza poszukać tam dowodów na ferrowulkanizm i ma nadzieję, że dokonają niezwykłego odkrycia.
      Psyche była prawdopodobnie w przeszłości otoczona krzemowym skalistym płaszczem, osłaniającym metaliczne jądro. Jednak nigdy nie stała się częścią planety. "Wczesny Układ Słoneczny był jak tor ze zderzającymi się samochodami", mówi Matthew Genge, eksperd od meteorytów z Imperial College London. Przez miliony lat w proto-Psyche mogła uderzać olbrzymia liczba mniejszych obiektów, w które w końcu pozbawiły ją skalistej otoczki, odsłaniając żelazno-niklową Psyche.
      Jacob Adams z Uniwersytetu Kalifornijskiego w Santa Cruz, i jego promotor Francis Nimmo, stworzyli serię matematycznych modeli, które brały pod uwagę uproszczony model metalicznego asteroidy i sprawdzały, co się dzieje, gdy taki asteroid stygnie od zewnątrz. Po utracie otaczających go warstw taki asteroida będzie stopniowo zamarzał i kurczył się, przez co na powierzchni pojawią się pęknięcia. Znajdujące się głębiej płynne żelazo będzie przez te pęknięcia uciekało.
      Symulowane asteroidy były mniej więcej wielkości Psyche, zatem być może uda się taki scenariusz zweryfikować podczas badań tej asteroidy.
      To, w jaki sposób planety stygną, może całkowicie zmienić ich historię. Ziemia, w 4,5 miliarda lat po swoim powstaniu, ma wciąż gorące, stopniowo stygnące jądro. Dotychczas ono nie wystygło, gdyż jest chronione przez grube kolejne warstwy naszej planety. Inaczej miała się sprawa z Merkurym. Jego niewielkie rozmiary i jądro stosunkowo większe względem planety niż ziemskie, spowodowały, że jądro planety wystygło i się skurczyło. W ramach tego procesu doszło do skurczenia zewnętrznych warstw planety i całej jej powierzchni, co zamknęło szczeliny, przez które w przeszłości wypływała magma.
      Psyche sama w sobie jest niezwykle interesująca. Dotychczasowe badania wskazują, że w połowie składa się ona z żelaza. ALbo więc jest niezwykle porowata, albo coś innego znacząco zmieniło jej strukturę.
      Ostatnio zaprezentowane wyliczenia sugerują, że mogą tam istnieć kominy wulkaniczne, a niewielką gęstość asteroidy można wyjaśnić, jeśli wciąż posiada ona skalisty płaszcz, a wewnątrz wciąż zachodzą procesy ferrowulkaniczne. Niewykluczone, że w jądrze znajduje się radioaktywne aluminium-26, które podtrzymuje aktywność wulkaniczną.
      Celem misji Psyche będzie zbadanie wieku asteroidy oraz względnego wieku jej poszczególnych regionów, sprawdzenie, czy składa się ona z tych samych pierwiastków, których spodziewamy się w jądrze Ziemi, zbadanie, czy Psyche formowała się w obecności większej czy mniejszej ilości tlenu niż ziemskie jądro oraz wykonanie mapy asteroidy.
      Misja Psyche zostanie wyposażona w cztery instrumenty – aparat fotograficzny wykonujący zdjęcia w różnych zakresach fali, spektrometr neutronowy i rentgenowski, magnetometr oraz urządzenie do pomiarów grawitacji. Ponadto sonda zostanie wyposażona w nowoczesny laserowy system kompunikacji (Deep Space Optical Communication – DSOC), a specjaliści z Jet Propulsion Laboratory przeprowadzą testy tego systemu. Jeśli się on sprawdzi, możemy zyskać znacznie bardziej wydajny sposób przesyłania danych pomiędzy Ziemią a obiektami pracującymi w przestrzeni kosmicznej.
      Obecny plan misji zakłada, że Psyche zostanie wystrzelona w 2022 roku, w roku 2023 skorzysta z asysty grawitacyjnej Marsa, na orbitę asteroidy dotrze w roku 2026 i pozostanie na niej przez 21 miesięcy.
      Przygotowania do misji idą najwyraźniej lepiej niż się spodziewano. Jeszcze dwa lata temu informowaliśmy, że Psyche ma wystartować w 2023 roku.

      « powrót do artykułu
×
×
  • Create New...