Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Proteina zwalczająca raka przeprojektowana tak, że nie ma skutków ubocznych

Recommended Posts

Dla pacjentów z agresywnymi formami raka nerki czy skóry jedynym ratunkiem może być interleukina-2, która wzmaga odpowiedź układu odpornościowego. Problem jednak w tym, że aby skutecznie zwalczała ona raka trzeba zastosować dawki, które zagrażają życiu pacjenta. Naukowcy z University of Washington wykorzystali model komputerowy do zaprojektowania od początku nowej proteiny, która równie skutecznie jak IL-2 zwiększa odpowiedź układu odpornościowego, ale jest pozbawiona skutków ubocznych interleukiny. Na razie nową proteinę z powodzeniem przetestowano na zwierzętach.

IL-2 to cytokina zwiększająca odpowiedź limfocytów T poprzez jednoczesne przyczepianie się do ich receptorów IL-2β oraz IL-2γ. Jeśli komórka posiada receptor IL-2α interleukina-2 łączy się również z nim. Może to się przydarzyć w komórkach budujących naczynia krwionośne, co powoduje, że zaczynają one przeciekać, a to zagraża życiu pacjenta.

Od 30 lat naukowcy próbują zmienić IL-2 w bardziej bezpieczną i efektywną, mówi Daniel Adriano Silva Manzano, biochemik z University of Washington i główny autor najnowszych badań. Jednak trudno jest dokonać zmian w IL-2, gdyż jest bardzo niestabilna i przestaje działać, gdy traci swoją zwykłą strukturę, a kolejne mutacje mogą ją jeszcze bardziej destabilizować.

Silva Manzano poprosił o pomoc Davida Bakera, projektanta białek i dyrektora laboratorium na swojej uczelni, oraz zwerbował do pomocy kolegów z USA, Portugalii, Hiszpanii i Wielkiej Brytanii. Ich celem było stworzenie od podstaw nowej proteiny przypominającej IL-2.

Naukowcy zaczęli pracę od przeanalizowania na poziomie atomowym sposobu interakcji IL-2 z receptorami α, β i γ. Gdy IL-2 zwija się w aktywny kształt 3D tworzy cztery segmenty o kształcie spirali. W miejscu, gdzie spirale łączą się ze sobą znajdują się dwa miejsca, które wiążą się z receptorami β i γ. Z receptorem α łączy się część jednej ze spiral oraz dwa miejsca łączenia spiral.
Naukowcy wykorzystali stworzone przez Bakera oprogramowanie o nazwie Rosetta. Ich celem było zaprojektowanie takiego białka, które łączyłoby się z receptorami β i γ, ale nie miałoby elementów łączących je z receptorami α. Rosetta zaproponowała 40 różnych rozwiązań. Po ich przeanalizowaniu naukowcy wybrali 22 białka, które zsyntetyzowali i przetestowali.

W końcu wybrali wersję nazwaną przez siebie Neo-2/15. Jedynie 14% sekwencji jej aminokwasów jest identyczna z IL-1. Badania laboratoryjne wykazały, że nowe białko ściśle łączy się z receptorami β i γ, ale nie z receptorami α. Podczas testów na myszach z nowotworami jelita grubego i czerniakiem nowa proteina wykazywała znacznie mniejsze skutki uboczne niż IL-2, silnie hamowała wzrost guza, a u niektórych zwierząt doprowadziła nawet do zniknięcia guzów nowotworowych. Dała więc lepsze skutki niż interleukina-2, której podawanie nie likwidowało guzów.

Jeśli testy kliniczne Neo-2/15 przebiegną równie pomyślnie, to onkolodzy zyskają nowy środek, który będzie można stosować dłużej, dzięki czemu organizm pacjenta będzie miał więcej czasu, by pozbyć się nowotworu. Niewykluczone, że jeszcze bardziej skuteczne może być połączenie Neo-2/15 z inhibitorami punktów kontrolnych.

University of Washington licencjonował Neo-2/15 firmie Neoleukin Therapeutics, która pracuje nad rozpoczęciem testów klinicznych. Zatrudnieni w niej naukowcy poszukują obecnie sposobu na jeszcze większe zredukowanie skutków ubocznych nowego środka tak, by układ odpornościowy atakował jedynie komórki guza, a nie zdrowe komórki.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Bez cienia wątpliwości wykazaliśmy, że w żywych komórkach powstają poczwórne helisy DNA. To każe nam przemyśleć biologię DNA, mówi Marco Di Antonio z Imperial College London (CL). Naukowcy po raz pierwszy w historii znaleźli poczwórne helisy DNA w zdrowych komórkach ludzkiego organizmu. Dotychczas takie struktury znajdowano jedynie w niektórych komórkach nowotworowych. Udawało się je też uzyskać podczas eksperymentów w laboratorium.
      Teraz okazuje się, że poczwórna helisa DNA może występować też w żywych, zdrowych komórkach ludzkiego ciała. Dotychczas struktury takiej, zwanej G-kwadrupleks (G4-DNA), nie zauważono w żywych komórkach, gdyż technika ich wykrywania wymagała zabicia badanej komórki. Teraz naukowcy z Uniwersytetu w Cambridge, ICL oraz Uniwersytetu w Leeds opracowali nowy znacznik fluorescencyjny, który przyczepia się go G4-DNA w żywych komórkach. To zaś pozwala na śledzenie formowania się tej struktury i badania roli, jaką odgrywa ona w komórce.
      Odkrycie poczwórnej helisy w komórkach, możliwość prześledzenia jej roli i ewolucji otwiera nowe pole badań nad postawami biologii i może przydać się w opracowaniu metod leczenia wielu chorób, w tym nowotworów.
      Teraz możemy obserwować G4 w czasie rzeczywistym w komórkach, możemy badać jej rolę biologiczną. Wiemy, że struktura ta wydaje się bardziej rozpowszechniona w komórkach nowotworowych. Możemy więc sprawdzić, jaką odgrywa ona rolę, spróbować ją zablokować, co potencjalnie może doprowadzić do pojawienia się nowych terapii, stwierdzają autorzy najnowszych badań.
      Naukowcy sądzą, że do formowania się kwadrupleksu dochodzi po to, by czasowo otworzyć helisę, co ułatwia różne procesy, jak np. transkrypcja.
      Wydaje się, że G4 jest częściej powiązana z genami biorącymi udział w pojawianiu się nowotworów. Jeśli struktura ta ma związek z chorobami nowotworowymi, to być może uda się opracować leki blokujące jej formowanie się.
      Już wcześniej ten sam zespół naukowcy wykorzystywał przeciwciała i molekuły, które były w stanie odnaleźć i przyczepić się do G4. Problem jednak w tym, że środki te musiały być używane w bardzo wysokich stężeniach, co groziło zniszczeniem DNA. To zaś mogło prowadzić do formowania się G4, zatem technika, której celem było wykrywanie G4 mogła de facto powodować jego tworzenie się, zamiast znajdować to, co powstało w sposób naturalny.
      Czasem naukowcy potrzebują specjalnych próbników, by obserwować molekuły wewnątrz żywych komórek. Problem w tym, że próbniki te mogą wchodzić w interakcje z obserwowanym obiektem. Dzięki mikroskopii jednocząsteczkowej jesteśmy w stanie obserwować próbniki w 1000-krotnie mniejszym stężeniu niż wcześniej. W tym przypadku próbnik przyczepia się do G4 w ciągu milisekund, nie wpływa na jej stabilność, co pozwala na badanie zachowania G4 w naturalnym środowisku bez wpływu czynników zewnętrznych.
      Dotychczasowe badania wykazały, że G4 forumuje się i znika bardzo szybko. To sugeruje, że jest to tymczasowa struktura, potrzebna do wypełnienia konkretnych funkcji, a gdy istnieje zbyt długo może być szkodliwa dla komórek.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Obecnie wstępną diagnozę nowotworów mózgu wykonuje się na podstawie badań obrazowych, jednak diagnoza szczegółowa, określająca np. konkretny rodzaj nowotworu, wymaga wykonania biopsji. Możliwość nieinwazyjnego zdiagnozowania nowotworu, oznaczałaby olbrzymi postęp w walce z nowotworami mózgu.
      Grupa naukowców Farshad Nassiri, Ankur Chakravarthy i ich koledzy z University of Toronto, we współpracy z amerykańskimi kolegami, informują na łamach Nature Medicine o opracowaniu wysoce czułego testu z krwi, który pozwala dokładnie diagnozować i klasyfikować różne typy guzów mózgu. Test opiera się na najnowszych odkryciach naukowych, dzięki którym wiemy, że profile metylacji DNA w plazmie są wysoce specyficzne dla różnych guzów i pozwalają na odróżnienie od siebie guzów pochodzących od tych samych linii komórkowych.
      Gdybyśmy dysponowali lepszą i bardziej wiarygodną metodą diagnozowania i klasyfikowania podtypów guzów, moglibyśmy zmienić sposób opieki nad pacjentem, mówi doktor Gelareh Zadeh, szefowa chirurgii onkologicznej w Cancer Care Ontario. To zaś miałoby olbrzymi wpływ na planowanie i przebieg leczenia.
      Jeden z autorów, doktor Danel De Carvalho, specjalizuje się w badaniu wzorców metylacji DNA. Kierowane przez niego laboratorium już wcześniej opracowało metodę badania wzorców metylacji za pomocą płynnej biopsji. Teraz, na potrzeby najnowszych badań, naukowcy porównali dane ze szczegółowych analiz tkanek nowotworów mózgu 221 pacjentów, z badaniem swobodnie krążącego DNA nowotworowego (ctDNA) obecnego w osoczu tych osób. Dzięki temu byli w stanie połączyć konkretne podtypy guzów mózgu z ctDNA krążącym we krwi. Następnie na tej podstawie opracowali algorytm, który klasyfikuje nowotwory mózgu wyłącznie na podstawie ctDNA.
      Jak zauważa doktor Zadeh, wcześniej nie było możliwe diagnozowanie nowotworów mózgu na podstawie badań krwi ze względu na istnienie bariery mózg-krew. Jednak nasz test jak tak czuły,że wykrywa we krwi nawet minimalne sygnały świadczące o istnieniu nowotworu. Mamy teraz nową nieinwazyjną metodę, która pozwala na wykrywanie i klasyfikowanie guzów mózgu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Siedzący tryb życia jest niezależnym wskaźnikiem zgonu z powodu nowotworu. Do takich wniosków doszli badacze z The University of Texas MD Anderson Cancer Center, którzy postanowili sprawdzić, czy istnieje związek pomiędzy siedzącym trybem życia a ryzykiem śmierci z powodu nowotworu. Odkryli, że najmniej aktywne osoby były narażone na o 82% większe ryzyko zgonu z powodu nowotworu, niż osoby najbardziej aktywne.
      To pierwsze badania, które jednoznacznie wykazują silny związek pomiędzy brakiem aktywności fizycznej a zgonem z powodu nowotworu. Nasze badania pokazały, że to, na ile dana osoba była aktywna przed zdiagnozowaniem u niej nowotworu, pozwala przewidzieć ryzyko zgonu, mówi profesor Susan Gilchrist, główna autorka badań.
      Naukowcy stwierdzili, że wystarczy zastąpić 30 minut siedzenia takim samym okresem aktywności fizycznej, by zmniejszyć ryzyko zgonu z powodu nowotworu. Jednak aktywność aktywności nierówna. Jeśli zamiast siedzieć przez pół godziny będziemy przez pół godziny oddawać się umiarkowanej aktywności fizycznej, takiej jak jazda na rowerze, to ryzyko zgonu spadnie o 31%. Jeśli zaś będzie to lekka aktywność fizyczna, jak spacer, to możemy spodziewać się 8% spadku ryzyka zgonu.
      Moje rozmowy z pacjentami zawsze zaczynają się od tego, dlaczego nie mają czasu na prowadzenie bardziej aktywnego trybu życia, mówi Gilchrist, która prowadzi na swojej uczelni Health Heart Program. Mówię im, by co mieć minut wstali i się przeszli, albo żeby zrezygnowali z windy i wchodzili po schodach. To może nie wyglądać na poważny wysiłek fizyczny, ale nasze badania pokazują, że nawet niewielka aktywność wydłuża życia po diagnozie.
      Naukowcy z Teksasu prowadzili długoterminowe badania REGARDS. Brało w nich udział ponad 30 000 osób w wieku powyżej 45. roku życia. Badania prowadzone były w latach 2003–2007, a ich celem było sprawdzenie długoterminowego wpływu trybu życia na zdrowie. Wśród badanych było 8002 osoby, które wyposażono w akcelerometry. Do tego eksperymentu wybrano osoby, które w momencie rozpoczęcia badań nie miały zdiagnozowanych nowotworów. Akcelerometry były noszone przez 7 kolejnych dni. Dane z nich gromadzono w latach 2009–2013. Później średnio przez 5 lat śledzono losy badanych osób. W tym czasie na nowotwory zmarło 268 badanych. Analiza danych z akcelerometrów wykazała, że dłuższe siedzenie było – niezależnie od wszystkich innych czynników – powiązane z większym ryzykiem zgonu z powodu nowotworu. Ważną rolę odgrywała też intensywność wysiłku fizycznego.
      Mimo kilku słabości, takich jak np. brak informacji, na jaki typ nowotworu zmarł dany pacjent, czy w jaki sposób był leczony, badania pokazały, jak ważne jest zalecenie, by mniej siedzieć, a więcej się ruszać. Naszym kolejnym celem będzie zbadanie, jak siedzący tryb życie wpływa na rozwój konkretnych typów nowotworów oraz czy jakąś rolę odgrywają tutaj płeć i rasa, mówi profesor Gilchrist.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      To prawdziwy przełom. Nie ma już więcej rekordów do pobicia. Padła ostatnia bariera rozdzielczości, mówi Holger Stark z Instytutu Fizyki Biochemicznej im. Maxa Plancka w Göttingen. Stał on na czele jednej z dwóch grup badawczych, które poinformowały o pierwszym w historii zobrazowaniu poszczególnych atomów w proteinie za pomocą mikroskopii krioelektronowej (cryo-EM).
      Osiągnięcie to pokazuje, jak wielkie możliwością stoją przed mikroskopią krioelektronową i umacniają jej pozycję jako narzędzia do mapowania trójwymiarowych kształtów protein. Takie narzędzia pozwalają na dokładne zbadanie struktur białek, a co za tym idzie, lepsze zrozumienie ich funkcjonowania, co z kolei przełoży się na stworzenie lepszych leków o mniejszej liczbie skutków ubocznych.
      Drugą grupą badawczą, które udało się zobrazować atomy w proteinach jest zespół pracujący pod kierunkiem Sjorsa Scheresa i Radu Aricescu z Medical Reasearch Council Laboratory of Molecular Biology (MRC-LMB) w Cambridge w Wielkiej Brytanii.
      Prace Niemców i Brytyjczyków chwali John Rubinstein, biolog z University of Toronto. Rozdzielczość atomowa to prawdziwy przełom, mówi i dodaje, że pozostało jeszcze kilka problemów do rozwiązania, jak np. obrazowanie protein o małej elastyczności. Prace te pokazują, dokąd możemy dojść, jeśli rozwiążemy te problemy, stwierdza.
      Mikroskopia krioelektronowa do licząca sobie dziesiątki lat technika, w której obrazuje się kształt zamrożonych próbek ostrzeliwując je elektronami i rejestrując ich odbicia. Około roku 2013 rozpoczęła się prawdziwa rewolucja. Dzięki coraz doskonalszym technikom wykrywania odbitych elektronów oraz coraz lepszemu oprogramowaniu do analizy, zaczęto uzyskiwać coraz lepszej jakości obraz.
      Z czasem obraz uzyskany z cryo-EM niemal dorównywał jakości obrazowi uzyskiwanemu z rentgenografii strukturalnej. Niemal, więc naukowcy nadal musieli polegać na rentgenografii. Technika ta pozwala na badanie skrystalizowanych protein. Wykonanie analizy wymaga najpierw uzyskania możliwie jak najbardziej regularnego i doskonałego monokryształu badanego związku. Uzyskanie takich kryształów jest czasochłonne. Może trwać wiele miesięcy, a nawet lat. Ponadto wiele protein interesujących z punktu widzenia medycyny nie tworzy kryształów, które można by w ten sposób badać. Croy-EM ma tę zaletę, że wymaga jedynie umieszczenia proteiny w oczyszczonym roztworze.
      Granicą, poza którą można mówić o rozdzielczości atomowej jest około 1,2 angstrema (1,2x10-10 metra). Oba zespoły naukowe, niemiecki i brytyjski, pracowały z apoferrytyną. To niezwykle stabilna proteina, za pomocą której testuje się cryo-EM. Poprzedni rekord obrazowania tej proteiny wynosił 1,54 angstrema.
      Oba zespoły wykorzystały nieco inne techniki, osiągając podobne rezultaty. Niemcy uzyskali rozdzielczość 1,25 A, Brytyjczycy zaś 1,2 A. Stark ocenia, że połączenie obu technik może pozwolić na zwiększenie rozdzielczości do około 1 angstrema, ale to praktycznie nieprzekraczalna granica dla mikroskopii krioelektronowej. Obszar poniżej 1 angstroma jest niemal nieosiągalny dla cro-EM. Uzyskanie takiej rozdzielczości za pomocą najnowocześniejszych dostępnych obecnie urządzeń wymagałoby setek lat rejestracji danych, niewyobrażalnie wielkich mocy obliczeniowych i możliwości przechowywania danych, mówi Stark.
      Scheres i Aricescu przetestowali też swoją technikę na receptorze GABAA. Jeszcze w ubiegłym roku udało im się obrazować ją w rozdzielczości 2,5 angstrema. Tym razem osiągnęli 1,7 A, chociaż w niektórych fragmentach obraz był jeszcze dokładniejszy. To było jak usunięcie przesłony z oczu. Przy tych rozdzielczościach każde pół angstroma otwiera zupełnie nowy wszechświat.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Niskokaloryczne diety w połączeniu z witaminą C ułatwiają walkę z agresywnymi nowotworami z mutacją KRAS, donoszą na łamach Nature naukowcy w Uniwersytetów w Mediolanie, Genui oraz Uniwersytetu Kalifornijskiego w Irvine. W swoich badaniach skupili się oni na wpływie takiego połączenia na leczenie raka jelita grubego, jednak nie wykluczają, że odpowiednia dieta wspomagana witaminą C poprawia wyniki chemioterapii w innych nowotworach z mutacją KRAS.
      Wiemy, że diety niskokaloryczne spowalniają rozwój guzów nowotworowych i powodują, że stają się one bardziej podatne na chemioterapię. Jednak znacznie gorzej rozumiemy potencjał terapeutyczny niskokalorycznych diet w połączeniu ze środkami, które nie są cytotoksyczne. Włosko-amerykański zespół wykazał w swojej pracy, że właściwości przeciwnowotworowe witaminy C są ograniczone przez fakt, że wzmacnia ona działanie proteiny o nazwie oksygenaza hemowej 1. Wykazali również, że diety niskokaloryczne odwracają indukowane przez witaminę C wzmocnienie działania tej proteiny oraz ferrytyny w nowotworach z mutacją KRAS, co z kolei prowadzi do zwiększenia ilości reaktywnych form tlenu oraz śmierci komórkowej. Cały ten proces jest dodatkowo wzmacniany przez chemioterapię.
      Podczas badań na myszach okazało się, że połączenie diety z witaminą C pomaga w zahamowaniu rozrostu guzów nowotworowych. U niektórych zwierzą zauważono nawet regresję guzów.
      Po raz pierwszy udało się wykazać skuteczność nietoksycznych rozwiązań w walce z agresywnym nowotworem, mówi jeden z głównych autorów badań, profesor Valter Longo. Wzięliśmy dwa rozwiązania, które są intensywnie badane pod kątem ich roli w opóźnianiu starzenia – niskokaloryczną dietę i witaminę C – i połączyliśmy je w skuteczną metodę antynowotworową.
      Stosowanie głodówki jest sporym wyzwaniem dla pacjentów nowotworowych. Znacznie łatwiej jest stosować niskokaloryczną dietę roślinną, która powoduje, że komórki reagują tak, jak na głodówkę. Najnowsze odkrycie sugeruje zaś, że połączenie takiej diety z witaminą C może wspomagać walkę z nowotworem.
      Podczas badań in vitro gdy używaliśmy obu metod osobno, zarówno dieta niskokaloryczna jak i witamina C nieco redukowały wzrost nowotworu i w niewielkim stopniu przyczyniały się do zwiększenia liczby ginących komórek. Gdy jednak użyliśmy tych metod razem, miało to dramatyczne skutki, prowadząc do śmierci niemal wszystkich komórek nowotworowych, mówi Longo.
      Zjawisko takie zaobserwowano jedynie w przypadku nowotworów z mutacją KRAS. Mutacja ta występuje w 25% wszystkich nowotworów i w około 50% nowotworów jelita grubego. Guzy z tą mutacją są odporne na większość sposobów leczenia.
      Jednocześnie włosko-amerykańskie badania pozwalają stwierdzić, dlaczego wcześniejsze studia nad użyciem witaminy C w leczeniu nowotworów nie przyniosły pożądanych wyników. Wydaje się, że podawania witaminy C powoduje, że komórki nowotworowe z mutacją KRAS chronią się, zwiększając poziom ferrytyny, proteiny wiążącej żelazo. Zmniejszając poziom ferrytyny naukowcy zwiększyli toksyczność witaminy C dla komórek. Przy okazji odkryto, że pacjenci z nowotworami jelita grubego i wysokim poziomem ferrytyny mają mniejsze szanse na przeżycie.
      Zaobserwowaliśmy, że dieta niskokaloryczna wzmaga terapeutyczny wpływ farmakologicznych dawek witaminy C na nowotwory z mutacją KRAS. Dzieje się tak dzięki regulacji poziomu żelaza i mechanizmowi zaangażowanemu w stras oksydacyjny. To zaś wskazuje szczególnie na gen odpowiedzialny z poziom żelaza – oksygenazę hemową 1, mówi współautorka badań Maira Di Tano.
      Na razie pozytywne efekty nowej metody zaobserwowano w eksperymentach in vitro oraz podczas badań na myszach.

      « powrót do artykułu
×
×
  • Create New...