Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Na asteroidzie Bennu jest woda

Recommended Posts

Misja OSIRIS-REx, która niedawno dotarła do asteroidy Bennu, odkryła uwięzioną wewnątrz wodę. To potwierdzenie, że Bennu jest bardzo cennym obiektem do badań naukowych.

OSIRIS-REX znajduje się w odległości kilkunastu kilometrów od asteroidy. Badania rozpoczęły się przed tygodniem. Naukowcy dysponują już pierwszymi danymi. Pochodzą one z dwóch spektrometrów OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) oraz OSIRIS-REx Thermal Emission Spectrometer (OTES). Wskazują one na istnienie grup hydroksylowych, molekuł składających się z atomów tlenu i wodoru. Uczeni przypuszczają, że istnieją one w całej asteroidzie i są zamknięte w tworzących ją glinach. To zaś oznacza, że w którymś momencie swojej historii materiał tworzący Bennu zetknął się z wodą.

Sama asteroida jest zbyt mała, by występowała na niej woda w stanie ciekłym, jednak odkrycie grup hydroksylowych wskazuje, że ciekła woda była obecna na znacznie większej asteroidzie macierzystej, z której Bennu powstała.

Obecność minerałów zawierających grupy hydroksylowe potwierdza, że Bennu, pozostałość po formowaniu się Układu Słonecznego, jest wspaniałym obiektem badań. Gdy w 2023 roku na Ziemię zostaną przywiezione próbki asteroidy, naukowcy zyskają skarbiec nowych informacji o historii i ewolucji Układu Słonecznego, mówi Amy Simon z Goddard Space Flight Center.

Dane przekazane przez OSIRIS-REx Camera Suite (OCAMS) potwierdzają prawdziwość modelu asteroidy, który powstał w 2013 roku na potrzeby misji. Model ten bardzo blisko przypomina rzeczywisty kształt, średnicę i prędkość obrotową asteroidy.
Powierzchnia Bennu to mieszanina fragmentów wypełnionych skałami i fragmentów dość płaskich. Ilość skalistych nierówności jest jednak większa niż się spodziewano. Zespół naukowy chce bliżej przyjrzeć się asteroidzie, by dobrze wybrać miejsce, z którego zostaną pobrane próbki.

Wstępne dane wskazują, że wybraliśmy dobry obiekt dla misji OSIRIS-REx. Dotychczas nie napotkaliśmy na żadne problemy, z którymi nie moglibyśmy sobie poradzić. Sonda jest w dobrej kondycji, a instrumenty naukowe pracują lepiej, niż to wymagane. Czas rozpocząć naszą przygodę, stwierdził Dante Lauretta, główny naukowiec misji.

Obecnie OSIRIS-REx wykonuje wstępne badania asteroidy, przelatując nad jej równikiem oraz oboma biegunami w odległości 7 kilometrów. Na ich podstawie zostanie obliczona masa obiektu. Jej znajomość jest niezbędnym elementem potrzebnym do umieszczenia sondy na orbicie Bennu.

Po raz pierwszy OSIRIS-REx ma trafić na orbitę Bennu 31 grudnia. Pozostanie tam do połowy lutego. Później rozpocznie kolejną serię przelotów nad asteroidą. Już obecnie wiadomo, że orbita na którą trafi OSIRIS-REx będzie znajdowała się nad centralną częścią Bennu, na wysokości 1,4–2 kilometrów.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Trajektoria asteroidy, która przed 66 milionami lat spadła na Ziemię i doprowadziła do zagłady dinozaurów, była dokładnie taka, jaka powinna być, by spowodować jak najwięcej zniszczeń. Nowa analiza krateru Chicxulub połączona z licznymi symulacjami komputerowymi wykazała, że prędkość i kąt uderzenia asteroidy znajdowały się w najbardziej śmiercionośnym dla Ziemi zakresie.
      Gdy asteroida uderzyła w Ziemię, wybiła olbrzymi kater, do której następnie zapadła się część materiału przemieszczona podczas uderzenia. Uderzenie skruszyło i ugięło skorupę ziemską, która następnie wyprostowała się, tworząc równinę w centrum krateru.
      Równina ta jest nachylona w kierunku, z którego nadeszło uderzenie, a kąt jej nachylenia jest zależny od kąta uderzenia asteroidy. Stąd też, na podstawie danych o budowie krateru, osadach, jego części centralnej i otaczających go wyniesieniach można wyciągnąć wiele wniosków na temat asteroidy, jej prędkości i kąta, pod jakim spadła na Ziemię.
      Naukowcy z Imperial College London przeprowadzili setki symulacji komputerowych, by sprawdzić, jak powinien wyglądać krater po uderzeniu asteroidy nadlatującej z różną prędkością i pod różnym kątem. Znaleźli w końcu taką konfigurację, która najlepiej odpowiada rzeczywistemu wyglądowi krateru Chicxulub.
      Okazało się, że asteroida, która przyniosła zagładę dinozaurom, poruszała się w tempie około 20 km/s i uderzyła w Ziemię pod kątem około 60 stopni. Większość zniszczeń zostało spowodowane przez odparowanie skał, z których materiał trafił do atmosfery, zablokował promienie słoneczne i na planecie zapanowała atomowa zima.
      Jak mówi Gareth Collins z ICL, symulacje wykazały, że kąt 60 stopni jest idealny, by wyrzucić w powietrze jak najwięcej materiału. Jeśli asteroida uderzyłaby pionowo z góry, zmiażdżyłaby więcej skał, jednak mniej materiału trafiłoby do atmosfery. Jeśli zaś uderzyłaby pod mniejszym kątem niż 60 stopni, to nie odparowałaby tak wielkiej ilości skał.
      To było uderzenie idealne, dodaje Collins. To był bardzo zły dzień dla dinozaurów. Im zaś więcej szczególnych warunków musiało być spełnionych, tym mniejsze prawdopodobieństwo, że do takiego zdarzenia dojdzie ponownie, stwierdza uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA zaprezentowała całościową mapę powierzchni asteroidy Bennu. To kolaż zdjęć zgromadzonych w ramach misji OSIRIS-REx między 7 marca a 19 kwietnia 2019 r.
      By uzyskać mozaikę, wykorzystano aż 2155 zdjęć wykonanych przez PolyCam. Naukowcy z NASA chwalą się, że udało się uzyskać największą rozdzielczość (5 cm na piksel), z jaką kiedykolwiek całościowo zmapowano Bennu.
      OSIRIS-REx wykonywał ujęcia z odległości od 3,1 do 5 km od powierzchni asteroidy. Dzięki szczegółowemu widokowi Bennu NASA mogła wybrać miejsca pobrania próbek: główne, czyli Nightingale w kraterze w północnej części asteroidy, oraz zapasowe - Osprey.
      Mapę-mozaikę można ściągnąć w różnych rozmiarach w dwóch wersjach: z koordynatami i bez.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W kwietniu ubiegłego roku japońska sonda Hayabusa 2 wystrzeliła w kierunku asteroidy Ryugu miedziany pocisk. Uderzenie odsłoniło wnętrze asteroidy. Wyrzucony podczas uderzenia materiał opadł na powierzchnię asteroidy. Trzy miesiące później w miejscu opadnięcia materiału wylądowała Hayabusa 2 i wystrzeliła drugi pocisk, z tantalu. Jego celem było wzbicie chmury pyłu, który miał trafić do specjalnego pojemnika. Hayabusa 2 wraca obecnie na Ziemię. Ma wylądować z próbkami w grudniu bieżącego roku.
      W tej chwili nie wiemy, czy udało się pobrać próbki, jednak znamy wyniki szczegółowych obserwacji krateru, który został wybity przez pierwszy z wystrzelonych pocisków. Krater miał 14,5 metra średnicy i 2,3 metry głębokości. Po raz pierwszy byliśmy w stanie obserwować krater utworzony w środowisku mikrograwitacji, mówi Masahiko Arakawa z Uniwersytetu w Kobe.
      Dzięki tym obserwacjom wiemy, ile lat liczy sobie Ryugu. Dotychczasowe szacunki znacznie się od siebie różniły. Wiek asteroidy oceniano na 9 lub 160 milionów lat. Japończycy donieśli, że po powierzchnią struktura asteroidy bardziej przypomina piasek niż skałę. To zaś oznacza, że Ryugu ma zaledwie 9 milionów lat.
      Asteroidy takie jak Ryugu powstają, gdy dojdzie do zderzenia dwóch większych obiektów, a następnie ma miejsce ponowna akumulacja materiału rozrzuconego w wyniku zderzenia. Zwykle z takiego zderzenia zostaje utworzonych wiele obiektów. Niewykluczone, że w przyszłości zaobserwujemy innych członków „rodziny” Ryugu. Może to być tym łatwiejsze, że skoro do zderzenia doszło niedawno, to inne asteroidy z niego pochodzące powinny znajdować się w pobliżu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Minor Planet Centre ogłosiło właśnie, że Ziemia ma... dwa księżyce. Poza Srebrnym Globem naszą planetę okrąża jeszcze jeden księżyc, który został przechwycony przez Ziemię przed około 3 laty. Nie zobaczymy go jednak gołym okiem. Nowy księżyc ma zaledwie od 1 do 6 metrów średnicy i zbyt długo z nami nie pozostanie.
      Po raz pierwszy został on zauważony przez Theodore'a Pruyne'a i Kacpera Wierzchosa za pomocą teleskopu w Mount Lemmon Observatory w Arizonie. Uczeni spostrzegli nieznany dotychczas obiekt 15 lutego. Kolejne obserwacje pozwoliły obliczyć jego orbitę i potwierdzić, że jest on powiązany z Ziemią. W związku z tym Minor Planet Center, które pracuje w imieniu Międzynarodowej Unii Astronomicznej, oficjalnie ogłosiło odkrycie i nadało księżycowi nazwę 2020 CD3.
      Obiekt ten to niewielka asteroida, której orbita skrzyżowała się z orbitą Ziemi. Czasem takie asteroidy przelatują obok naszej planety, czasem na nią spadają. Jednak 2020 CD3 została przechwycona i stała się naszym tymczasowym księżycem. Te tak zwane „mini księżyce” pojawiają się i znikają. Autorzy jednego z wcześniejszych badań twierdzą, że w każdym momencie Ziemia posiada przynajmniej jeden dodatkowy czasowy mini-księżyc o średnicy powyżej 1 metra, który wykonuje co najmniej jeden pełny obieg wokół Ziemi.
      Żaden z tych księżyców nie zostaje na długo, gdyż oddziaływania grawitacyjne Księżyca i Słońca destabilizują ich orbity. Najprawdopodobniej krążą one wokół Ziemi najwyżej przez kilka lat, później uwalniają się spod jej wpływu i zajmują orbitę wokół Słońca.
      2020 CD3 znajduje się dalej niż Księżyc i prawdopodobnie odbywa obecnie ostatnie okrążenie wokół naszej planety.
      Poprzednim odkrytym tymczasowym księżycem Ziemi był 2006 RH120. Pomiędzy wrześniem 2006 a czerwcem 2007 czterokrotnie okrążył on Ziemię, a później poleciał swoją drogą. Obecnie znajduje się po drugiej stronie Słońca, a Ziemię ponownie odwiedzi w 2028 roku.
      Istnieje też hipoteza mówiąca, że „mini księżyce” to asteroidy, których okres orbitalny wokół Słońca wynosi dokładnie 1 rok. Czasem ich orbity zbiegają się z naszą, wówczas wydają się powiązane z Ziemią, ale w rzeczywistości krążą niezależnie wokół Słońca. Mówi się tutaj o „kwazi-satelitach” Ziemi. Jeden z nich, 1991 VG, prawdopodobnie dokonał co najmniej jednego obiegu wokół naszej planety. Niewykluczone, że powtórzy to w przyszłości.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Algorytm sztucznej inteligencji zidentyfikował 11 asteroid o średnicy ponad 100 metrów każda, które mogą uderzyć w Ziemię i spowodować olbrzymie zniszczenia. Każdy z tych obiektów jest znacznie większy od meteorytu tunguskiego (50–80 metrów średnicy), który eksplodował na Ziemią i powalił drzewa na obszarze ponad 2000 km2.
      Z pisma Astronomy & Astrophysics dowiadujemy się, że naukowcy z holenderskiego Uniwersytetu w Leiden stworzyli algorytm sztucznej inteligencji, który trenowali na superkomputerze ALICE. John D. Hefele, Francesco Bortolussi i Simon Portegies Zwart wykorzystali sieć neuronową, na której najpierw modelowali ruch planet i Słońca w ciągu najbliższych 10 000 lat. Następnie „przewinęli” swoją symulację od tyłu, dodając do niej hipotetyczne asteroidy „wyrzucane” z Ziemi w przestrzeń kosmiczną.
      Gdy uruchomili symulację we właściwej kolejności, otrzymali bazę danych wyimaginowanych asteroid, które mogłyby uderzyć w Ziemię. Ta baza posłużyła im do treningu sieci neuronowej, której zadaniem było następnie określenie, która z prawdziwych znanych nam asteroid może stanowić zagrożenie dla naszej planety.
      Testy dowiodły, że oprogramowanie, nazwane Hazard Object Identifier (HOI, co po holendersku oznacza też „cześć”), potrafi zidentyfikować 90,99% potencjalnie niebezpiecznych obiektów z udostępnionej przez NASA 2000 obiektów bliskich Ziemi.
      Kolejne symulacje wykazały, że w latach 2131 – 2923 co najmniej 11 dużych, ponad 100-metrowych znanych nam obecnie asteroid, przybliży się do Ziemi na odległość mniejszą niż 1/10 odległości pomiędzy Ziemią a Księżycem.
      Obserwacje obiektów bliskich Ziemi (NEO) prowadzone są od lat. Jednak obecnie stosowane oprogramowanie nie rozpoznało w tych asteroidach zagrożenia. Stało się tak dlatego, że asteroidy mają trudne do przewidzenia orbity, a oprogramowanie to używa innych metod obliczeniowych niż wspomniany algorytm sztucznej inteligencji.
      Wiemy teraz, że nasze oprogramowanie działa. Będziemy chcieli je udoskonalić i wykorzystać w nim więcej danych. Problem w tym, że niewielkie różnice w obliczeniach orbity mogą prowadzić do bardzo różnych wniosków, mówi profesor Portegies Zwart.
      Tego typu badania pozwolą nam w przyszłości uchronić Ziemię przed katastrofalnym w skutkach zderzeniem z asteroidą. Im szybciej dowiemy się o zagrożeniu, tym więcej czasu będziemy mieli, by na nie zareagować. Nie od dzisiaj bowiem prowadzi się badania koncepcyjne nad niszczeniem czy przekierowaniem obiektów zagrażających Ziemi.
      Temat asteroid zagrażających Ziemi i obrony przed nimi poruszaliśmy już wielokrotnie w tekstach Szef NASA zaleca modlitwę, Znamy już ponad 10 000 NEO, NASA planuje test technologii ochrony Ziemi przed asteroidami, Obronienie Ziemi będzie trudniejsze, niż sądziliśmy czy Źle szacujemy ryzyko kosmicznej katastrofy?

      « powrót do artykułu
×
×
  • Create New...