Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Antybiotyk minocyklina wydłuża życie, bo kontroluje tempo produkcji białek w rybosomie

Recommended Posts

Antybiotyk minocyklina może chronić przed chorobami neurodegeneracyjnymi w czasie starzenia.

Autorzy publikacji z pisma eLife odkryli, że minocyklina wydłuża życie nicieni, zapobiegając akumulacji pewnych białek w procesie starzenia.

Agregaty białek występują w kilku chorobach mózgu związanych z wiekiem, w tym w stwardnieniu zanikowym bocznym, chorobach Alzheimera i Parkinsona, a także w chorobach prionowych. Ponieważ ich patogeneza wiąże się z agregacją nieprawidłowo zwiniętych polipeptydów, bywają one nazywane chorobami agregacyjnymi (konformacyjnymi).

Najnowsze studium pokazuje, że minocyklina zapobiega takiej akumulacji nawet u starszych zwierząt, z upośledzonymi przez wiek szlakami odpowiedzi na stres.

Gdy się starzejemy, upośledzeniu ulega homeostaza białek (proteostaza). Jest to równowaga między produkcją/utrzymaniem prawidłowo sfałdowanych białek a ich degradacją przez lizosomy oraz proteasom. Byłoby świetnie, gdyby istniały sposoby na wzmacnianie proteostazy i wydłużanie życia [...] na drodze leczenia starszych osób po wystąpieniu pierwszych objawów chorób neurodegeneracyjnych bądź markerów chorób, np. akumulacji białek - podkreśla Gregory Solis z Instytutu Badawczego Scripps. W ramach naszego badania dociekaliśmy, czy minocyklina może wydłużyć życie zwierząt, u których już doszło do upośledzenia proteostazy.

Amerykanie wybrali 21 związków, o których wiadomo, że wydłużają życie Caenorhabditis elegans. Okazało się, że o ile wszystkie wydłużały życie młodych nicieni, o tyle na stare działała tylko jedna substancja - minocyklina.

By sprawdzić, czemu się tak dzieje, naukowcy oceniali ewentualny wpływ antybiotyku na agregację białek. Młodym i starym nicieniom podawano wodę albo minocyklinę. Później określano poziom beta-amyloidu i alfa-synukleiny, a więc białek związanych, odpowiednio, z chorobą Alzheimera i Parkinsona. Okazało się, że bez względu na wiek zwierząt, antybiotyk ograniczał agregację obu białek.

W kolejnym etapie badań akademicy sprawdzali, czy antybiotyk włącza białka sygnalizujące stres, których funkcja jest u starszych osobników upośledzona. Ku zaskoczeniu wszystkich okazało się, że pod wpływem minocykliny ich aktywność de facto spada. Później oceniano, czy lek wyłącza komórkowe procesy degradacji białek, ale okazało się, że również nie.

Dzięki sondzie chemicznej Amerykanie ustalili, że minocyklina bezpośrednio oddziałuje na rybosom, czyli kompleks białek i kwasów nukleinowych służący do produkcji białek. Ten sam wynik uzyskano u nicieni oraz w komórkach mysich i ludzkich.

Gdy naukowcy posłużyli się zmutowanymi nicieniami z nasiloną bądź zmniejszoną produkcją białek, zauważyli, że u zwierząt z już obniżoną produkcją do dalszego ograniczenia tego procesu i wydłużenia życia potrzeba było niższych dawek minocykliny. Tam zaś, gdzie produkcja białek była nasilona, dawki musiały być większe. To sugeruje, że minocyklina wydłuża życie, kontrolując tempo produkcji białek w rybosomie.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Każdy chromosom ludzkiego organizmu jest zakończony sekwencjami telomerowymi. Ponieważ skracają się one przy każdym podziale komórki, przyciągały od lat wyobraźnię badaczy. Stawiali oni sobie pytanie: co stanie się, kiedy telomery skrócą się tak bardzo, że podział będzie niemożliwy? W istocie, związek między skracaniem telomerów a maksymalną liczbą podziałów komórki (limitem Hayflicka) został potwierdzony. Istnieje zatem związek między długością telomerów a starzeniem się.
      Wiele chorób ma cechy przyspieszonego starzenia – dezorganizacji procesów, które normalnie utrzymują równowagę niezbędną dla funkcjonowania organizmu. Wobec tego można też postulować, że długość telomerów mogłaby okazać się przydatna w medycynie, służąc jako marker stanu zdrowia.
      Krótsze telomery leukocytarne to eksperymentalny biomarker ryzyka sercowo-naczyniowego [1], w znacznym stopniu niezależny od typowych czynników ryzyka ocenianych w wywiadzie i analizach biochemicznych. Może to być pośrednio związane z czynnikami dietetycznymi, jako że większa długość telomerów koreluje ze spożyciem warzyw i owoców [2], większą aktywnością fizyczną [3] i czystością powietrza [4]. Jednak liczba chorób, w których wykazano zmiany długości telomerów, jest obszerna.
      Większa długość telomerów w tkance raka piersi jest związana z lepszą prognozą niezależnie od szeregu innych czynników zazwyczaj branych przy takiej ocenie pod uwagę [5]. Wykazano również zależność między długością telomerów a ryzykiem raka żołądka, chorobą Alzheimera i cukrzycą [10]. Telomery są krótsze u palaczy, proporcjonalnie do liczby paczkolat, a efekt ten zdaje się w jakimś stopniu utrzymywać nawet po zaprzestaniu palenia [6]. Zaburzenia wzrastania wewnątrzmacicznego korelują ze skróceniem telomerów łożyska [7]. Wiadomo także, że kobiety mają dłuższe telomery niż mężczyźni [8]. Osoby z krótszymi telomerami zdają się reagować silniejszą produkcją kortyzolu na czynniki stresowe [9].
      Temat długości telomerów jest również aktywnie zgłębiany w Polsce. W Klinice Gastroenterologii Dziecięcej i Chorób Metabolicznych Uniwersytetu Medycznego w Poznaniu realizowany jest projekt Narodowego Centrum Nauki „Preludium” dotyczący długości telomerów w mukowiscydozie (2017/25/N/NZ5/02126). Mukowiscydoza jest najczęstszą poważną chorobą genetyczną w populacji osób białych.
      Polski program badań przesiewowych w kierunku mukowiscydozy należy do najlepszych na świecie (ok. 99% skuteczność). Dodatni wynik stwierdza się u ok. 1 na 5000 nowo urodzonych dzieci. Łącznie w Polsce na mukowiscydozę choruje ponad 2000 osób. Dzięki postępom w intensywnym leczeniu, jakie jest wymagane w tej chorobie, przeciętna długość życia polskich chorych wydłużyła się z ok. 20 lat dekadę temu do niemal 30 lat dziś. U znaczącej większości chorych można dokładnie poznać mutacje genu CFTR, którego mutacje są odpowiedzialne za chorobę. Niemniej, zależności między tymi mutacjami a przebiegiem choroby nie są ścisłe, co stanowi jedną z wielkich zagadek biomedycyny w ogóle. Z tego powodu potrzebne są dokładne narzędzia pozwalające charakteryzować chorych i przewidywać u nich przebieg choroby, a także uprzedzająco stosować odpowiednie interwencje.
      Prowadzone w Poznaniu badania mają na celu scharakteryzowanie długości telomerów oraz przebiegu klinicznego choroby w grupie dzieci i osób dorosłych z mukowiscydozą. Długość telomerów oznaczana jest metodą ilościowej reakcji polimerazy (qPCR), co wymaga znacznego stopnia precyzji. Publikacji wyników badań można spodziewać się w przyszłym roku. Tymczasem coraz wyraźniej widać, że telomery budzą szerokie zainteresowanie w środowisku naukowym i przyciągają uwagę jako potencjalne biomarkery. Ich wprowadzenie do praktyki będzie jednak wymagało licznych badań i weryfikacji przydatności w dużych grupach.
      Bibliografia
      1.     Haycock PC, Heydon EE, Kaptoge S, Butterworth AS, Thompson A, Willeit P. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 8 lipiec 2014;349:g4227.

      2.     Rafie N, Golpour Hamedani S, Barak F, Safavi SM, Miraghajani M. Dietary patterns, food groups and telomere length: a systematic review of current studies. Eur J Clin Nutr. 2017;71(2):151–8.

      3.     Lin X, Zhou J, Dong B. Effect of different levels of exercise on telomere length: A systematic review and meta-analysis. J Rehabil Med. 8 lipiec 2019;51(7):473–8.

      4.     Miri M, Nazarzadeh M, Alahabadi A, Ehrampoush MH, Rad A, Lotfi MH, i in. Air pollution and telomere length in adults: A systematic review and meta-analysis of observational studies. Environ Pollut. styczeń 2019;244:636–47.

      5.     Ennour-Idrissi K, Maunsell E, Diorio C. Telomere Length and Breast Cancer Prognosis: A Systematic Review. Cancer Epidemiol Biomarkers Prev. 2017;26(1):3–10.

      6.     Astuti Y, Wardhana A, Watkins J, Wulaningsih W, PILAR Research Network. Cigarette smoking and telomere length: A systematic review of 84 studies and meta-analysis. Environ Res. 2017;158:480–9.

      7.     Niu Z, Li K, Xie C, Wen X. Adverse Birth Outcomes and Birth Telomere Length: A Systematic Review and Meta-Analysis. J Pediatr. 2019;215:64-74.e6.

      8.     Gardner M, Bann D, Wiley L, Cooper R, Hardy R, Nitsch D, i in. Gender and telomere length: systematic review and meta-analysis. Exp Gerontol. marzec 2014;51:15–27.

      9.     Jiang Y, Da W, Qiao S, Zhang Q, Li X, Ivey G, i in. Basal cortisol, cortisol reactivity, and telomere length: A systematic review and meta-analysis. Psychoneuroendocrinology. 2019;103:163–72.

      10.     Smith L, Luchini C, Demurtas J, Soysal P, Stubbs B, Hamer M, i in. Telomere length and health outcomes: An umbrella review of systematic reviews and meta-analyses of observational studies. Ageing Res Rev. 2019;51:1–10.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy, na czele którego stali specjaliści z University of Edinburgh, zidentyfikował geny powiązane ze starzeniem się i wyjaśnia, dlaczego proces starzenia się przebiega tak różnie u różnych ludzi. Wyniki badań sugerują, że utrzymywanie odpowiedniego poziomu żelaza we krwi pomaga starzeć się lepiej i żyć dłużej.
      Naukowcy oparli swoje badania na na analizie danych genetycznych ponad miliona osób. Jesteśmy bardzo podekscytowani tymi wynikami. Mamy tutaj silną sugestię, że zbyt wysoki poziom żelaza we krwi zmniejsza liczbę zdrowo przeżytych lat oraz że utrzymywanie odpowiedniego poziomu żelaza pozwala kontrolować proces starzenia się. Sądzimy, że nasze odkrycia dotyczące metabolizmu żelaza pozwoli wyjaśnić, dlaczego spożywanie bogatego w żelazo czerwone mięso wiąże się z różnymi schorzeniami wieku starszego, jak na przykład z chorobami serca, mówi główny badać doktor Paul Timmers.
      Wraz z wiekiem nasz organizm powoli traci zdolność do homeostazy, czyli utrzymywania równowagi pomiędzy poszczególnymi parametrami. Brak tej równowagi jest przyczyną wielu chorób, a w końcu śmierci. Jednak przebieg procesu starzenia się jest bardzo różny u różnych ludzi. U niektórych pojawiają się poważne chroniczne schorzenia już w dość młodym wieku i ludzie ci szybko umierają, inni z kolei żyją w zdrowiu przez bardzo długi czas i do końca swoich dni są w dobrej kondycji.
      Autorzy najnowszych badań przyjrzeli się genom i odkryli dziesięć regionów odpowiedzialnych za długość życia, długość życia w zdrowiu oraz długość życia w idealnych warunkach. Naukowcy zauważyli, że istnieje silna korelacja pomiędzy tymi trzema czynnikami, a poziomem żelaza we krwi. Badania statystyczne przeprowadzone metodą randomizacji Mendla potwierdziły, że poziom żelaza ma najbardziej istotny wpływ na długość życia w zdrowiu.
      Na poziom żelaza we krwi wpływ ma nasza dieta. Zbyt wysoki lub zbyt niski jego poziom jest powiązany z chorobami wątroby, chorobą Parkinsona, a w starszym wieku wiąże się z obniżeniem zdolności organizmu do zwalczania infekcji. "Możliwości syntezy hemu spadają wraz z wiekiem. Jego niedobory prowadzą do akumulacji żelaza, stresu oksydacyjnego i dysfunkcji mitochondriów.
      Akumulacja żelaza pomaga patogenom w podtrzymaniu infekcji, co jest zgodne z obserwowaną u osób starszych podatnością na infekcje. Z kolei nieprawidłowa homeostaza żelaza w mózgu wiąże się z chorobami neurodegeneracyjnymi, jak choroba Alzheimera, Parkinsona czy stwardnienie rozsiane, piszą autorzy badań.
      Naukowcy zastrzegają, że kwestie te wymagają dalszych badań, ale już przewidują, że ich odkrycie może doprowadzić do opracowania leków, które zmniejszą niekorzystny wpływ starzenia się na zdrowie, wydłużą nie tylko ludzkie życie, ale też okres życia w zdrowiu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Chcielibyście wiedzieć, jaka kombinacja antybiotyków najlepiej zadziała na konkretnego pacjenta? I znaleźć ją w 12, a może nawet w 6 godzin, na miejscu? A może marzy się wam przeszukiwanie tysięcy próbek naraz w poszukiwaniu swoistych przeciwciał? To wszystko umożliwia nowy chip stworzony przez naukowców z IChF PAN. Jest tani, szybki i wiarygodny. Może zastąpić szybkie testy immunochromatograficzne i daje pacjentom większe szanse na pokonanie zakażenia.
      Nowe narzędzie diagnostyczne tworzy zespół pod kierunkiem prof. Piotra Garsteckiego. W pracy opublikowanej w Micromachines badacze wykazali, że połączenie kilku różnych, prostych metod pozwala stworzyć przyjazny użytkownikom zestaw do badania wrażliwości bakterii na antybiotyki. Nowy chip wykorzystuje mniej odczynników i antybiotyków niż standardowy antybiogram na agarowej pożywce, a jego użycie jest tak proste jak Etestu. Użytkownik może też wybrać sposób wizualizacji wyników, np. wykorzystując metaboliczne wskaźniki obecności bakterii, barwniki fluorescencyjne albo efekt kolorymetryczny.
      Chcieliśmy zbadać antybiotykowrażliwość najprościej, jak tylko się da, nie tylko dla pojedynczej substancji bakteriobójczej, ale także dla ich kombinacji albo w różnych warunkach - wyjaśnia dr Ladislav Derzsi, jeden z autorów pracy nadzorujący projekt. By stworzyć nasz chip, połączyliśmy kilka rzeczy odkrytych zupełnie niezależnie. Wykorzystaliśmy np. standardowe techniki fotolitografii i litografii tworzyw sztucznych, powszechnie używane do produkcji tzw. laboratoriów chipowych (LOC), i połączyliśmy je z techniką druku bezkontaktowego na specjalnie dla nas zaprojektowanej maszynie. Dzięki połączeniu tych metod naukowcy są w stanie precyzyjnie zakraplać mikroskopijne ilości dowolnej cieczy w mikrodołki chipu na podobnej zasadzie, jak działają drukarki atramentowe lub laserowe. W prezentowanym badaniu zakraplane były roztwory antybiotyków w różnym stężeniu i różnych kombinacjach. Drukarki mają maleńkie dysze i wykorzystując siły piezoelektryczne, potrafią precyzyjnie dostarczać w żądany punkt określoną objętość atramentu: nanolitry, pikolitry, ba, nawet femtolitry - mówi dr Derzsi. My robimy podobnie, tyle że zamiast atramentu dostarczamy antybiotyki i nie na papier, lecz do mikrodołków z plastycznego elastomeru. Rozpuszczalnik, czyli woda, odparowuje, a to, co zostaje, to mikroskopijna dawka antybiotyku. W opisywanym badaniu mikrodołki były stosunkowo duże, miały 1 mm średnicy i pojemność ok. 0,67 mikrolitra. Na każdym chipie umieściliśmy 1024 takie celki. To o rząd wielkości więcej niż na standardowych płytkach, które mają 96 dołków i to mimo że nasza konstrukcja jest o połowę mniejsza. Co więcej, zmniejszając indywidualne rozmiary każdej celki, liczbę mikrodołków można zwiększyć nawet do 10000 na standardowych rozmiarów chip - dodaje naukowiec.
      By ułatwić korzystanie z nowej metody, badacze owijają chipy taśmą polimerową, by odciąć dostęp powietrza, a następnie poddają je działaniu próżni. W ten sposób sprzęt jest dostarczany do końcowego użytkownika w postaci sterylnej, w podciśnieniu. W wersji komercyjnej zapewne dodatkowo pakowalibyśmy chipy próżniowo tak, jak to się robi z żywnością - wyjaśnia dr Derzsi. Użytkownik musi tylko odpakować płytkę, wprowadzić roztwór bakterii zwykłą, dostępną na rynku pipetą, a potem dodać niewielką ilość oleju, który rozdziela dołki i pomaga uniknąć ich krzyżowego skażenia. Później trzeba już tylko włożyć płytkę do cieplarki i... czekać na wynik. Po zadanym czasie można odczytać, jaka kombinacja antybiotyków i w jakich stężeniach działa najlepiej; innymi słowy, zobaczyć, gdzie bakterie rosną niechętnie lub wcale.
      Wielką zaletą nowego systemu diagnostycznego jest jego elastyczność. Można wytwarzać sterylne zestawy pod dyktando odbiorcy, z różnymi antybiotykami w różnych kombinacjach. My badaliśmy na jednej płytce 6 pojedynczych antybiotyków w ośmiu różnych stężeniach i –  dla zwiększenia precyzji – w ośmiu powtórzeniach. Testowaliśmy też ich kombinacje, umieszczając w jednym mikrodołku po dwa z sześciu badanych antybiotyków i sprawdzając ich działanie w szeregu powtórzeń. Można zresztą badać połączenia wielu antybiotyków, inhibitorów i substancji pomocniczych, wstrzykując je do jednej celki w zadanych przez odbiorcę kombinacjach - mówi dr Derzsi - ale zwykle lekarze nie podają pacjentowi więcej niż dwóch, by nie przeciążać jego organizmu. Dzięki naszej metodzie mogą pobrać od chorego próbkę i sprawdzić, który antybiotyk lub jakie ich połączenie zadziała optymalnie w tym konkretnym przypadku, czyli zidywidualizować leczenie, zamiast polegać na statystycznych uogólnieniach. A przecież każdy z nas reaguje na terapię nieco inaczej, nawet jeśli chorobę wywołały te same mikroby. Chodzi o mikroflorę, indywidualną zmienność metabolizmu i wiele innych czynników. Można zatem powiedzieć, że opracowana w IChF PAN metoda to krok przybliżający nas w stronę medycyny spersonalizowanej. Z drugiej strony, to wielka pomoc nie tylko dla klinicystów, ale i dla badaczy próbujących znaleźć nowe, nieoczywiste połączenia antybiotykowe, które działałyby lepiej od tych powszechnie znanych.
      Choć praca zespołu prof. Garsteckiego skupiała się na antybiotykowrażliwości bakterii, sama metoda ma potencjał, by po wprowadzeniu pewnych zmian można ją było wykorzystywać także np. do identyfikacji swoistych genów albo przeciwciał. Zwłaszcza że byłoby to ekonomiczne. Pojedyncza płytka nie powinna kosztować więcej niż 5 euro. Metody mikrofluidyczne mają jeszcze jedną zaletę: poszukując nowych leków, naukowcy często mają do dyspozycji bardzo ograniczoną liczbę potencjalnie leczniczych substancji. Dzięki drukowi bezkontaktowemu mogą przetestować więcej różnych stężeń i kombinacji takich leków in spe, zanim zabraknie im substratu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Bakterie coraz częściej nabywają oporności na stosowane przez nas antybiotyki. Naukowcy z Uniwersytetu Południowej Danii zauważyli, że składnik konopi siewnych, kannabidiol (CBD), wspomaga działanie antybiotyków. To już kolejne badania wskazujące, że CBD może być skuteczny w walce z infekcjami bakteryjnymi.
      Problem antybiotykooporności narasta na całym świecie i naukowcy od lat alarmują, że jeśli nic się nie zmieni i nie będziemy w stanie opracowywać coraz to nowszych skuteczniejszych antybiotyków, to w przyszłości ludzie mogą zacząć umierać na choroby, które od dziesięcioleci nie stanowią dla nas zagrożenia.
      Dlatego tez trwają prace nie tylko nad nowymi antybiotykami, ale też nad składnikami wspomagającymi ich działanie. Jednym z takich składników może być kannabidiol.
      Janne Kudsk Klitgaard i Claes Sondergaard Wassmann informują na łamach Scientific Reports o wynikach swoich badań. Gdy zastosowali oni CBD wraz z antybiotykami zauważyli, że takie połączenie bardziej efektywnie zwalcza bakterie niż same antybiotyki. Potrzebowaliśmy mniej antybiotyku by zabić daną liczbę bakterii, mówią naukowcy.
      Podczas badań CBD zostało użyte do wzmocnienia działania bacytracyny przeciwko bakteriom Gram-dodatnim. Okazało się, że składnik konopii wspomaga zwalczanie metycylinoopornego gronkowca złocistego (MRSA), Enterococcus faecalis, Listeria monocytogenes oraz metycyliooporny Staphylococcus epidermidis. Kombinacja taka nie działa jednak na bakterie Gram-ujemne.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wiemy, że kobiety żyją dłużej od mężczyzn. Średnia długość życia przedstawicielek płci pięknej jest o 7,8% większa, niż w przypadku panów. Jak się okazuje, ta różnica jest jeszcze większa w przypadku dziko żyjących ssaków. Przeciętna samica dzikiego ssaka żyje aż o 18,6% dłużej niż samiec
      Największą różnice widać u kitanki lisiej, lwów, łosi, orek, kudu wielkiego i owiec, mówi profesor Fernando Colchero z Interdyscyplinarnego Centrum Dynamiki Populacji na Uniwersytecie Południowej Danii. Uczony wraz ze swoimi współpracownikami zebrali dane demograficzne dotyczące ponad 130 populacji dzikich ssaków i określili zarówno średnią długość życia, jak i ryzyko zgonu jako funkcję wieku dla obu płci.
      Nie tylko okazało się, że samice żyją dłużej, ale również, że w większości populacji różnica ta jest większa niż w przypadku człowieka.
      Dla około połowy zbadanych przez nas populacji ryzyko zgonu związane z wiekiem jest bardziej wyraźne u samic, niż u samców mówi Colchero. To zaś oznacza, że większa długość życia samic ma prawdopodobnie związek z innymi czynnikami, z którymi zwierzęta stykają się w ciągu dorosłego życia.
      Powszechnie uważa się, że samce angażują się w potencjalnie niebezpieczną rywalizację seksualną i prowadzą bardziej ryzykowny tryb życia, co wpływa na ogólną średnią wieku. Jednak Colchero nie zauważył, by intensywność selekcji seksualnej miała bezpośredni wpływ na ryzyko zgonu wśród obu płci. Badania sugerują raczej, że ważniejsze są tutaj złożone interakcje pomiędzy cechami fizjologicznymi obu płci i warunkami środowiskowymi, w jakich żyją.
      Obserwowaliśmy spore różnice. W przypadku niektórych gatunków to samce żyją najdłużej. Widzimy tam jasny trend statystyczny, który może być wyjaśniany na wiele różnych sposobów, dodaje profesor Dalia Conde z Wydziału Biologii.
      Jedną z przyczyn, dla której samce żyją krócej, może być np. konieczność włożenia przez nich więcej energii w wyhodowanie cech potrzebnych do rywalizacji o samice, takich jak duże rogi. To wymaga sporo energii, a jeśli dany gatunek żyje w trudnych warunkach środowiskowych, to połączenie obu elementów może negatywnie wpływać na szanse na przeżycie. Inne możliwe wyjaśnienie mówi, że przyczyną są androgeny. Samce wytwarzają je więcej niż samice. Androgeny wpływają na wydajność układu odpornościowego, gdy jest ich zbyt dużo wpływ ten jest negatywny, przez co samce mogą być bardziej podatne na infekcje i różne choroby.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...