Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

DNA ujawnia nieznane fakty z zasiedlania Ameryki

Recommended Posts

Badania genetyczne ujawniły niespodziewane informacje na temat przybycia człowieka do Ameryki Środkowej i Południowej. Dowiadujemy się z nich, że w przeszłości doszło do dwóch nieznanych wcześniej epizodów wymiany genetycznej pomiędzy Ameryką Północną a Południową. Jeden z tych epizodów zaważył na składzie genetycznym całego kontynentu.

Uzyskane wyniki wskazują, że przedstawiciele kultury Clovis, najstarszej szeroko rozpowszechnionej kultury Ameryki Północnej, mieli większy wpływ demograficzny na południe, niż dotychczas sądzono.

W ramach najnowszych badań przeanalizowano genom 49 osób z Ameryki Środkowej i Południowej. Wiek analizowanych próbek sięgał nawet 11 000 lat. Wcześniej podobnej jakości analizy udawało się dokonać w przypadku próbek nie starszych niż 1000 lat.
Międzynarodowy zespół naukowców, na którego czele stali specjaliści z Harvard Medical School opublikował wyniki swoich badań na łamach periodyku Cell. Dowiadujemy się z nich, że DNA spokrewnione z kulturą Clovis znaleziono na terenie dzisiejszych Belize, Chile i Brazylii. Pochodziło ono sprzed 9–11 tysięcy lat.

Głównym naszym odkryciem było spostrzeżenie, że przedstawiciele północnoamerykańskiej kultury Clovis pochodzącej sprzed około 12 800 lat byli spokrewnieni z najstarszymi mieszkańcami Chile, Belize i Brazylii. To wspiera hipotezę mówiącą, że ludzie, którzy rozprzestrzenili kulturę Clovis po Ameryce Północnej, dotarli też do Ameryki Środkowej i Południowej, mówi Cosimo Posth z Instytutu Historii Człowieka im. Maxa Plancka.

Jednak u współczesnych mieszkańców Ameryki Południowej nie ma pozostałości genetycznych po twórcach kultury Clovis. Nie ma ich też w materiale młodszym niż 9000 lat. To było nasze drugie odkrycie. Wykazaliśmy, że co najmniej 9000 lat temu doszło do wymiany genów na skalę kontynentalną, mówi profesor David Reich z Harvard Medical School.

U obecnych mieszkańców Ameryki Południowej wyraźnie widać pokrewieństwo genetyczne z ludźmi, którzy dokonali wspomnianej wymiany. To zjawisko wyraźnie odmienne od tego, co widzimy w zachodniej Eurazji czy w Afryce, gdzie pozostało niewiele miejsc o tak długotrwałym dziedzictwie genetycznym.

Drugi, nieznany dotychczas epizod migracji, widoczny jest w genomie starożytnych mieszkańców kalifornijskich Channel Islands, którzy – jak się właśnie okazało – już przed co najmniej 4200 laty byli spokrewnieni genetycznie z ludźmi zamieszkującymi Andy na południu dzisiejszego Peru.

Naukowcy uważają, że jest bardzo mało prawdopodobne, by doszło do migracji z Channel Islands do Ameryki Południowej. Ich zdaniem pokrewieństwo genetyczne pomiędzy tymi regionami to skutek ruchów ludnościowych, które miały miejsce tysiące lat wcześniej. Prawdopodobnie miało to miejsce tysiące lat wcześniej, a my po prostu nie dysponujemy szczątkami, które by to  pokazywały. Istnieją dowody archeologiczne wskazujące, że około 5000 lat temu w Środkowych Andach doszło do dużych ruchów ludnościowych. Rozprzestrzenianie się poszczególnych podgrup może wyjaśniać, dlaczego znajdujemy to pokrewieństwo pochodzące z późniejszych okresów, wyjaśnia Nathan Nakatsuka z Harvard Medical School.

Uczeni podkreślają, że ich obecne odkrycia mogą być dopiero wierzchołkiem góry lodowej. Już w niedalekiej przyszłości coraz doskonalsza technika może pozwolić na odkrycie kolejnych tajemnic. Konieczne będzie zdobycie szczątków ludzkich starszych niż 11 000 lat. Chociaż nawet okres 3–11 tysięcy lat temu nie jest dobrze zbadany. Brakuje nam danych z Amazonii, Karaibów i północnych części Ameryki Południowej. Nie wiemy zatem, jak populacja z tamtych terenów ma się do terenów już zbadanych. Uzupełnienie tej wiedzy powinno być priorytetem, uważa profesor Reich.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Rogoząb australijski (Neoceratodus forsteri) to zwierzę o najdłuższym zsekwencjonowanym dotąd genomie. Ten najbardziej pierwotny gatunek ryby dwudysznej ma DNA wielokrotnie dłuższe od DNA człowieka. Należy do grupy mięśniopłetwych, które w dewonie wyszły na ląd i dały początek czworonogom.
      Siegfried Schloissnig i jego koledzy z austriackiego Instytutu Badawczego Patologii Molekularnej poinformowali, że genom rogozęba składa się z 43 miliardów par bazowych, czyli jest 14-krotnie dłuższy od genomu Homo sapiens. Jest też o 30% dłuższy od dotychczasowego rekordzisty, genomu axolotla, który został zsekwencjonowany w 2018 roku przez ten sam zespół naukowy.
      Podczas badań uczeni wykorzystali komputer o wysokiej wydajności, by poskładał analizowane fragmenty DNA w jedną całość. Genom rogozęba australijskiego był bowiem sekwencjonowany we fragmentach. Co więcej, by wyeliminować błędy, jakie wprowadza sekwencer, naukowcy użyli wielu kopii genomu. Złożeniem wszystkich części w całość zajął się komputer.
      Rogoząb australijski żyje w południowo-wschodnim Queensland. Zwierzę niewiele się zmieniło od czasu, kiedy przed milionami lat przeszło przeobrażenia umożliwiające mu oddychanie powietrzem atmosferycznym. Rogoząb ma dobrze rozwinięte płetwy piersiowe i brzuszne, które przypominają łapy. Ma też pojedyncze prymitywne płuco, przekształcone z pęcherza pławnego. W czasie suszy, gdy zanikają zbiorniki wodne, rogoząb oddycha powietrzem atmosferycznym.
      Dotychczas nie było jasne, czy z kręgowcami lądowymi jak ptaki i ssaki bliżej spokrewniony jest rogoząb czy też prymitywne ryby z rzędu celakantokształtnych, z których najbardziej znane są latimerie. Obecnie wykonana analiza jednoznacznie wykazała, że to rogozęby są bliżej spokrewnione ze zwierzętami czworonożnymi. Celakantokształtne oddzieliły się wcześniej, natomiast drogi rogozęba i linii ewolucyjnej, która dała początek lądowym czworonogom rozeszły się około 420 milionów lat temu.
      Żeby wyjść z wody, musisz przygotować się do życia na lądzie. Musisz być w stanie oddychać powietrzem oraz czuć zapachy, mówi Schloissnig. Uczony dodaje, że rogoząb jest podobny płazów pod względem liczby genów związanych z rozwojem płuc, kończyn oraz zdolności do odbierania zapachów z powietrza.
      Jeśli popatrzymy na rogozęba z perspektywy genetycznej, to znajduje się on w połowie drogi pomiędzy rybami a kręgowcami lądowymi, stwierdza uczony.
      Szczegóły pracy Austriaków poznamy na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ponad dekadę temu genetycy roślin zauważyli coś dziwnego. Badając szczepione rośliny stwierdzili, że w komórkach każdej z nich istnieją sygnały wskazujące, że doszło między nimi do wymiany dużych ilości DNA. Samo w sobie nie jest to niczym dziwnym, nie od dzisiaj wiemy o horyzontalnym transferze genów. Jednak w tym wypadku wydało się, że doszło do transferu całego nietkniętego genomu chloroplastów. To już była zagadka, gdyż komórki roślinne otoczone są ochronną ścianą i nie ma oczywistego sposobu wymiany tak dużej ilości DNA.
      Potrzeba było ponad 10 lat, by rozwiązać tę zagadkę. Naukowcy z Instytutu Molekularnej Fizjologii Roślin im. Maxa Plancka w Poczdamie zarejestrowali właśnie film dokumentujący taki transfer genów. Okazało się, nie tylko, że ściany komórkowe roślin są czasem bardziej porowate niż sądziliśmy, ale że istnieje mechanizm, dzięki całe organelle wędrują pomiędzy sąsiadującymi komórkami. Nowością jest tutaj wykazanie, że całe fizyczne organelle przemieszczają się pomiędzy komórkami. Dwie różne rośliny mogą wymienić organelle, mówi Charles Melnyk z Uniwersytetu Nauk Rolniczych w Uppsali.
      Szczepienie roślin jest stosowane co najmniej od czasów starożytnego Rzymu. Technika ta pozwala np. młodym roślinom na wcześniejsze owocowanie i poprawia ich odporność. Do zaszczepienia może też dojść w sposób naturalny.
      Przed około dekadą Ralph Bock z Instytutu Molekularnej Fizjologii Roślin, zaszczepił dwa gatunki tytoniu, a następnie zsekwencjonował geny rośliny z obu stron modzela, czyli miejsca połączenia roślin. Okazało się, że rośliny wymieniły całe genomy chloroplastów.
      Tego się nie można było spodziewać, mówi Pal Maliga, genetyk roślin z Rutgers University, który niezależnie znalazł dowody na transfer chloroplastów i mitochondriów. Komórki roślinne otoczone są sztywnymi ścianami, więc wyobrażałem sobie komórki roślinne jako cytoplazmę w klatce, z której nie może się wydostać, mówi Maliga.
      Dowody na wymianę dużej ilości materiału genetycznego stanowiły się prawdziwą zagadkę dla specjalistów. Jedynymi znanymi otworami w ścianie komórek roślinnych były niewielkie plazmodesmy, pomosty o średnicy około 0,05 mikrometra, dzięki którym sąsiadujące komórki mogą wymieniać proteiny i molekuły RNA. Tymczasem typowy chloroplast ma zaś średnicę około 5 mikrometrów. Jest więc zdecydowanie zbyt duży, by przedostać się przez plazmodesmę.
      Zagadkę udało się rozwiązać, gdy Bock rozpoczął współpracę z Alexandrem Hertlem, który specjalizuje się w obrazowaniu komórek w czasie rzeczywistym. Najpierw naukowcy zauważyli, że otwory w komórkach mogą mieć średnicę nawet 1,5 mikrometra. To jednak nadal zbyt mało, by przedostał się przez nie chloroplast. Naukowcy przyjrzeli się też komórkom w modzelu i wówczas zauważyli przemieszczający się chloroplast. Okazało się, że niektóre chloroplasty mogą zmieniać się w bardziej prymitywne proto-plastydy, których średnica może wynosić jedynie 0,2 mikrometra. Naukowcy ze zdumieniem obserwowali, jak takie proto-plastydy przemieszały się się w kierunku właśnie odkrytych większych otworów w ścianach komórkowych. Przeciskały się się przez nie i powracały do normalnych rozmiarów dla chloroplastów.
      Hertle przyznaje, że naukowcy nie rozumieją dobrze metamorfozy chloroplastów, jednak wydaje się, że jest to reakcja na niedobór węgla i zmniejszoną fotosyntezę. Gdy bowiem wyłączano światło, zaobserwowano aż 5-krotny wzrost transferu organelli.
      To, jak dobrze plastydy funkcjonują w nowej roślinie, zależy od tego, na ile rośliny są spokrewnione genetycznie. Im są sobie bliższe, tym lepiej plastydy działają.
      Maliga podejrzewa, że proto-plastydy mogą zawierać lub wytwarzać molekuły sygnałowe, które pomagają w leczeniu miejsca szczepienia. Wydaje się też, że powstające duże otwory w ścianach komórkowych również są efektem reakcji rośliny na szczepienie. Nie można jednak wykluczyć, że formują się też na którymś z etapów normalnego wzrostu rośliny, uważa uczony.
      Swoje badania naukowcy opisali na łamach Science Advances.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy od dawna spierają się, czy przed Kolumbem dochodziło do kontaktów pomiędzy mieszkańcami Ameryki a Polinezji. Zwolennicy hipotezy o kontakcie zwracali uwagę na istnienie w polinezyjskim zapisie archeologicznym roślin, występujących jedynie w Amerykach. Słynny Thor Heyerdahl sugerował, że ludzie z Ameryki Południowej zasiedlili wschodnią Polinezję i Wyspę Wielkanocną. Przeprowadzone dotychczas badania genetyczne dawały sprzeczne wyniki.
      Alexander G. Ioannidis z Uniwersytetu Stanforda, Javier Blanco-Portillo z meksykańskiego Narodowego Laboratorium Genomiki Bioróżnorodności (LANGEBIO) oraz współpracujący z nimi naukowcy z USA, Chile, Norwegii, Wielkiej Brytanii i Meksyku, przeprowadzili badania, w ramach których poszukiwali genetycznej spuścizny mieszkańców Ameryki w genomach Polinezyjczyków. Przeanalizowali w tym celu genomy 807 osób z 17 populacji wysp Polinezji i 15 grup rdzennych Amerykanów zamieszkujących pacyficzne wybrzeża kontynentów.
      Analiza dostarczyła silnych dowodów na istnienie kontaktów pomiędzy Polinezyjczykami a Indinamia. Doszło do nich koło 1200 roku, czyli w czasie zasiedlenia odległych wysp Oceanii. Badania wykazały też, że przed zasiedleniem Wyspy Wielkanocnej doszło do pojedynczego kontaktu pomiędzy mieszkańcami wschodniej Polinezji a grupą z Ameryki, która była najbliżej spokrewniona z dzisiejszymi rdzennymi mieszkańcami Kolumbii.
      W genomie mieszkańców Wyspy Wielkanocnej widać ślady kontaktów z Europejczykami oraz z Indianama z Chile (Pehuenche i Mapuche). Jednak kontakty z chilijskimi rdzennymi Amerykanami są związane z europejską kolonizacją Ameryki. Jedyny kontakt niezwiązany z kolonizacją, jaki mieszkańcy Rapa Nui mieli z mieszkańcami Ameryki, zaszedł pomiędzy nimi a kolumbijskim ludem Zenu. Podobnie zresztą było w przypadku innych wysp Polinezji, gdyż stwierdzono, że prekolumbijskie kontakty pomiędzy tymi obszarami nawiązywali Indianie zamieszkujący na północ od dzisiejszego Peru.
      Badania genetyczne znajdują potwierdzenie w badaniach lingwistycznych i historycznych. Od dawna zwraca się uwagę na pewne podobieństwo pomiędzy statuami z odległych wysp wschodniej Polinezji, a statuami znalezionymi w prekolumbijskim San Augustin w Kolumbii. Jednak silniejszym dowodem na kontakt jest polinezyjskie słowo „kumala” oznaczające słodkiego ziemniaka. Jest ono podobne do nazw nadanych tej roślinie na północy Ameryki Południowej, skąd ziemniaki pochodzą. Na przykład lud Canari z Ekwadoru używa wyrazu „cumal”. Tymczasem nazwy z języków Indian peruwiańskich są spokrewnione z językami z Andów pochodzącymi z dala od wybrzeży.
      Również geografia wspiera pogląd, że to ludy mieszkające na północ od Peru wybrały się do Polinezji. To właśnie na północ od Peru pustynie wybrzeża Pacyfiku przechodzą w lasy dostarczające budulca. I to właśnie z wybrzeży dzisiejszych Ekwadoru i Kolumbii tamtejsi mieszkańcy wybierali się na tratwach z drzewa balsa by handlować z mieszkańcami Mezoameryki. A współczesne symulacje komputerowe pokazują, że rozkład prądów morskich i wiatrów jest taki, że to właśnie z tratwy wypływające z północnych regionów Ameryki Południowej z największym prawdopodobieństwem mogą być zniesione w kierunku Polinezji. Podróżnicy tacy najprawdopodobniej najpierw trafiliby na Markizy Południowe lub na Tuamotu. Oba te archipelagi leżą w sercu wyspiarskiego regionu, w którym stwierdzono istnienie kolumbijskiego komponentu genetycznego.
      Najbardziej prawdopodobny scenariusz wygląda zatem tak, że około roku 1200 – najwcześniejsze szacunki wynikające z najnowszych badań genetycznych mówią o roku 1150 i wyspie Fatu Hiva na Markizach Południowych – doszło do kontaktu pomiędzy Polinezyjczykami a mieszkańcami północnych regionów Ameryki Południowej. Niewykluczone, że to Polinezyjczycy, zasiedlający kolejne wyspy, natknęli się na niewielką osiedloną już grupę pochodzącą z Ameryki Południowej.
      Nie można też wykluczyć innego wyjaśnienia. Otóż to grupa Polinezyjczyków mogła zawędrować do Ameryki Południowej i po jakimś czasie stamtąd wrócić. Mogli przy tym zabrać ze sobą mieszkańców Ameryki lub na terenie Ameryki doszło do mieszania się i do Polinezji powróciły osoby mające geny z Ameryki Południowej.
      Szczegóły badań zostały opublikowane w artykule Native American gene flow into Polynesia predating Easter Island settlement.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      DNA komórek macicy kobiet cierpiących na endometriozę wykazuje inne wzorce metylacji, niż DNA kobiet zdrowych, donoszą naukowcy z zespołu Lindy C. Giudice z Uniwersytetu Kalifornijskiego w San Francisco. Być może w przyszłości te różnice w metylacji będą używane do diagnozowania endometriozy i do rozwoju zindywidualizowanych planów leczenia pacjentek, mówi doktor Stuart B. Moss.
      Okazało się, że nie tylko istnieją różnice w metylacji pomiędzy kobietami zdrowymi a chorymi, ale różnice te widoczne są również w zależności od stopnia rozwoju choroby, a poddane metylacji regiony kodu genetycznego w różny sposób reagują na hormony związane z cyklem menstruacyjnym.
      Endometrioza to choroba, w wyniku której wyściółka macicy osadza się poza macicą. Jej komórki trafiają do jajników, pęcherza, osadzają się na jelitach czy organach wewnętrznych. Jednym z głównych jej objawów jest silny ból, szczególnie podczas miesiączkowania, kiedy to również złuszcza się nieprawidłowo osadzona tkanka i dochodzi do krwawień z miejsc, w których się ona znajduje. Endometrioza często powoduje bezpłodność, dochodzi również do uszkodzeń organów wewnętrznych, poważnych zaburzeń hormonalnych i wielodniowych epizodów olbrzymiego bólu.
      Podczas najnowszych badań naukowcy skupili się na fibroblastach zrębu błony śluzowej macicy. Komórki te regulują pracę komórek wyściełających macicę. Uczeni porównywali metylację w różnych regionach DNA oraz sprawdzili różnice w funkcjonowaniu genów w komórkach u kobiet, które nie mają endometriozy ani żadnej innej choroby ginekologicznej z kobietami z I i IV stadium endometriozy. Zbadali również, jak przebiega proces metylacji i jak działają genu po poddaniu komórek działaniu samego estradiolu, samego progesteronu oraz mieszanki obu hormonów. Poziomy hormonów dobrano tak, by odpowiadały one ich zmianom w czasie cyklu menstruacyjnego.
      Uczeni stwierdzili m.in., że widoczne różnice w metylacji i funkcjonowaniu genów pomiędzy I a IV stadium endometriozy mogą oznaczać, że mamy do czynienia z dwoma różnymi podtypami, a nie różnymi stadiami rozwoju choroby.
      Uzyskane przez nas dane wskazują, że prawidłowa interakcja hormonów oraz wzorce metylacji DNA są kluczowe, dla normalnego funkcjonowania macicy. Zmiany, jakie zaobserwowaliśmy, mogą odgrywać kluczową rolę w rozwoju bezpłodności, która często towarzyszy endometriozie, stwierdził główny autor badań, Sahar Houshdaran.
      Ze szczegółami badań można zapoznać się na łamach PLOS Genetics.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zespół naukowców Uniwersytetu Warszawskiego pod kierunkiem dr hab. Joanny Kowalskiej opublikował na łamach czasopisma Nucleic Acids Research artykuł opisujący syntezę i zastosowanie fluorowanych cząsteczek DNA do badań funkcji i właściwości kwasów nukleinowych z wykorzystaniem fluorowego magnetycznego rezonansu jądrowego. Publikacja ta została uznana przez recenzentów za Breakthrough Paper – artykuł przełomowy dla rozwoju nauki.
      Zespół naukowców z Wydziału Fizyki UW oraz Centrum Nowych Technologii UW, który tworzą: dr hab. Joanna Kowalska, dr Marcin Warmiński, prof. Jacek Jemielity oraz Marek Baranowski, opublikował na łamach prestiżowego czasopisma naukowego Nucleic Acids Research (NAR) wyniki eksperymentów dotyczące syntezy i charakterystyki oligonukleotydów znakowanych atomem fluoru na jednym z końców nici kwasu nukleinowego (DNA) oraz ich zastosowań w badaniach metodą fluorowego jądrowego rezonansu magnetycznego (19F NMR).
      Opisane związki stanowią nowy rodzaj sond molekularnych do prostego wykrywania różnych wariantów przestrzennych DNA (tzw. struktur drugorzędowych), takich jak fragmenty dwuniciowe (dupleksy), a także bardziej nietypowe struktury – tzw. struktury niekanoniczne (G-kwadrupleksy i i-motywy). Znakowane fluorem fragmenty DNA umożliwiają badanie tych struktur za pomocą wrażliwej na zmiany strukturalne metody, jaką jest spektroskopia 19F NMR.
      Publikacja badaczy Uniwersytetu Warszawskiego otrzymała od recenzentów czasopisma Nucleic Acids Research status Breakthrough Paper – artykułu przełomowego dla rozwoju nauki. Recenzenci docenili połączenie prostego i wydajnego podejścia syntetycznego, umożliwiającego otrzymanie fluorowanych cząsteczek DNA, z wykorzystaniem metody 19F NMR. Połączenie to zaowocowało opracowaniem metody badawczej o szerokim spektrum zastosowań: od śledzenia zmian strukturalnych dupleksów DNA do monitorowania oddziaływań pomiędzy kwasem nukleinowym, a białkami i małymi cząsteczkami.
      Rezultaty opisane w publikacji otwierają nowe możliwości w badaniach poznawczych kwasów nukleinowych, a także mogą znaleźć zastosowanie w odkrywaniu leków oddziałujących, poprzez specyficzne wiązanie, z określonymi sekwencjami lub strukturami przestrzennymi w DNA. Większość opracowywanych dotychczas leków działa poprzez oddziaływanie z białkami. Leki oddziałujące z DNA są natomiast mało selektywne, a przez to toksyczne. Opracowanie metod umożliwiających odkrywanie cząsteczek oddziałujących tylko z wybranymi sekwencjami DNA otwiera drogę do powstania leków charakteryzujących się znacznie mniejszą toksycznością – komentuje dr hab. Joanna Kowalska z Wydziału Fizyki UW, współautorka artykułu.
      Nucleic Acids Research to czasopismo naukowe, którego celem jest popularyzacja najwyższej jakości badań, których rezultaty oceniane są przez grono naukowców-recenzentów w zakresie biologii molekularnej i komórkowej. Status Breakthrough Paper otrzymują publikacje opisujące badania, które rozwiązują istniejący od dawna problem lub wskazują nowe możliwości i kierunki rozwoju nauki.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...