Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

To nie naukowa sensacja, a złudzenie optyczne

Rekomendowane odpowiedzi

Astronomowie ze szwedzkiego Uniwersytetu w Lund znaleźli możliwe wytłumaczenie tajemniczego zjawiska, odkrytego w ubiegłym roku w pobliżu centrum naszej galaktyki. Wówczas zauważono, że w pobliżu centralnej czarnej dziury, Sagittariusa A*, znajdują się duże ilości skandu. Szwedzi twierdzą, że to iluzja optyczna.

W ubiegłym roku pojawiła się praca naukowa, której naukowcy donosili, że w czerwonych olbrzymach, oddalonych od czarnej dziury nie więcej niż o 3 lata świetlne, znajduje się duża ilość trzech różnych pierwiastków.

Teraz naukowcy z Uniwersytetu w Lund we współpracy z kolegami z Uniwersytetu Kalifornijskiego z Los Angeles, twierdzą, że zauważone widmo spektroskopowe skandu, wanadu i itru, to złudzenie optyczne. Te czerwone olbrzymy zużyły większość swojego wodoru i ich temperatura jest o połowę niższa niż temperatura Słońca, mówi główny autor badań, doktorant Brian Thorsbro. Wedle najnowszych badań, niska temperatura gwiazd przyczyniła się do powstania iluzji optycznej. Elektrony wspomnianych pierwiastków zachowują się inaczej w niższych temperaturach niż w wyższych. Podczas badania widma spektroskopowego może to wprowadzać w błąd. Do takich wniosków doszli astronomowie i fizycy atomowi.

Thorsbro i jego zespół wykorzystali podczas swoich badań m.in. Teleskopy Kecka na Hawajach. Wykonali szczegółowe mapowanie centralnych obszarów Galaktyki, skupiając się na znajdujących się tam gwiazdach i badając, jakie pierwiastki zawierają. To światowej klasy badania w tym sensie, że wykonaliśmy szczegółowe mapowanie składu gwiazd wielkiej centralnej gromady otaczającej czarną dziurę, wyjaśnia Nnils Ryde z Uniwersytetu w Lund.

Na podstawie badań w bliskiej podczerwieni, z wykorzystaniem technologii, która jest dostępna dopiero od niedawna, uczeni doszli do wniosku, że wcześniejsze doniesienia to nie naukowa sensacja, a złudzenie optyczne.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Henna Kokkonen, świeżo upieczona magister Uniwersytetu w Jyväskylä w Finlandii, odkryła nieznany dotychczas izotop astatu, najrzadszego pierwiastka występującego w skorupie ziemskiej. W ramach swojej pracy magisterskiej Henna analizowała dane z eksperymentu podczas którego bombardowano atomy srebra wiązką strontu-84. Młoda uczona zauważyła w nich nieznane dotychczas jądro atomowe, astat-190. Składa się ono z 85 protonów oraz 105 neutronów i jest najlżejszym znanym izotopem astatu.
      Co więcej, zarejestrowała też sygnały, które mogą świadczyć o pojawieniu się innego nieznanego izotopu, astatu-188.
      Astat to najrzadszy naturalnie występujący pierwiastek w skorupie ziemskiej. Szybko ulega połowicznemu rozpadowi, dlatego na Ziemi jest go w danym momencie nie więcej niż 0,07 grama. Badania nad nowymi jądrami atomowymi są istotne dla zrozumienia budowy jądra atomu oraz ograniczeń, jakim podlega znana nam materia, mówi Kokkonen.
      Astat powstaje w skorupie ziemskiej wyłącznie w wyniku rozpadu cięższych pierwiastków. Spośród 41 (wraz z tym zauważonymi przez Kekkonen) izotopów astatu, tylko 4 występują naturalnie: astat-215, astat-216, astat-218 i astat-219. Czas ich połowicznego rozpadu wynosi od 0,1 ms do 56 s.
      Najbardziej stabilnym izotopem tego pierwiastka jest astat-210, o nieco ponad 8-godzinnym czasie połowicznego rozpadu. Dotychczas nigdy nie uzyskano czystej próbki astatu. Nie znamy wielu jego właściwości, a wiele z tych, które znamy, jest dedukowanych z pozycji pierwiastka w tabeli okresowej. Jeden ze sztucznie uzyskiwanych izotopów, astat-211 jest badany pod kątem wykorzystania w radioterapii nowotworów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W jednym z laboratoriów na Imperial College London odtworzono wirujący dysk plazmy, z tych, jakie otaczają czarne dziury i tworzące się gwiazdy. Eksperyment pozwala lepiej modelować procesy, zachodzące w takich dyskach, a naukowcy mają nadzieję, że dzięki temu dowiedzą się, jak rosną czarne dziury i powstają gwiazdy.
      Gdy materia zbliża się do czarnej dziury, jest rozgrzewana i staje się plazmą, czwartym stanem materii składającym się z naładowanych jonów i wolnych elektronów. Zaczyna też się obracać, tworząc dysk akrecyjny. W wyniku obrotu powstają siły odśrodkowe odrzucające plazmę na zewnątrz, jednak siły te równoważy grawitacja czarnej dziury.
      Naukowcy chcą poznać odpowiedź na pytanie, w jaki sposób czarna dziura rośnie, skoro materia – w formie plazmy – pozostaje na jej orbicie. Najbardziej rozpowszechniona teoria mówi, że niestabilności w polu magnetycznym plazmy prowadzą do pojawienia się tarcia, plazma traci energię i wpada do czarnej dziury.
      Dotychczas mechanizm ten badano za pomocą ciekłych wirujących metali. Za ich pomocą sprawdzano, co dzieje się, gdy pojawi się pole magnetyczne. Jednak metale te zamknięte są w rurach, co nie oddaje w pełni swobodnie poruszającej się plazmy.
      Doktor Vincente Valenzuela-Villaseca i jego zespół wykorzystali urządzenie Mega Ampere Generator for Plasma Implosion Experiments (MAGPIE) do stworzenia wirującego dysku plazmy. Za jego pomocą przyspieszyli osiem strumieni plazmy i doprowadzili do ich zderzenia, w wyniku czego powstała obracająca się kolumna plazmy. Odkryli, że im bliżej środka, tym plazma porusza się szybciej. To ważna cecha dysków akrecyjnych.
      MAGPIE generuje krótkie impulsy plazmy, przez co w utworzonym dysku dochodziło tylko do jednego obrotu. Jednak liczbę obrotów będzie można zwiększyć wydłużając czas trwania impulsów plazmy. Przy dłużej istniejących dyskach możliwe będzie też zastosowanie pól magnetycznych i zbadanie ich wpływu na plazmę. Zaczynamy badać dyski akrecyjne w nowy sposób, zarówno za pomocą Teleskopu Horyzontu Zdarzeń, jak i naszego eksperymentu. Pozwoli nam to przetestować różne teorie i sprawdzić, czy zgadzają się one z obserwacjami, mówi Valenzuela-Villaseca.
      Ze szczegółami badań można zapoznać się na łamach Physical Review Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Chińscy astronomowie znaleźli najcięższy pierwiastek kiedykolwiek zauważony na egzoplanecie. Wei Wang i jego koledzy z Narodowego Obserwatorium Astronomicznego Chin poinformowali o zaobserwowaniu samaru w atmosferze planety MASCARA-4b. Pierwiastki o tak dużej masie są dość rzadkie i trudne do zaobserwowania, jednak mogą nam wiele powiedzieć o tworzeniu się i ewolucji planet.
      MASCARA-4b znajduje się w odległości około 550 lat świetlnych od Ziemi. To gorący jowisz, gazowy olbrzym, o średnicy 1,5 raza większej od średnicy Jowisza. Masa planety jest ponad 3 razy większa od masy Jowisza, a temperatura na jej powierzchni wynosi około 1900 stopni Celsjusza. Planeta obiega swoją gwiazdę macierzystą w ciągu niecałych 3 ziemskich dni. Gwiazda, MASCARA-4, ma średnicę niemal 2-krotnie większą od Słońca, a jej temperatura sięga 7730 stopni Celsjusza.
      Chińczycy badali MASCARĘ-4b za pomocą Very Large Telescope w Chile, analizując spektrum światła jej gwiazdy przefiltrowanego przez atmosferę planety. W ten sposób znaleźli wiele masywnych pierwiastków jak na przykład bar. Dotychczas dzierżył on miano najcięższego pierwiastka znalezionego na egzoplanecie. Zaobserwowano jednak też samar, który zawiera o sześć protonów więcej niż bar, a jego liczba atomowa to 62.
      Wang zauważa, że każda gwiazda i planeta powinny posiadać te pierwiastki. Jednak zagadką pozostaje, dlaczego można je zauważyć. Ze względu na swoją masę pierwiastki te powinny znajdować się niżej, w regionach o wyższym ciśnieniu i nie powinniśmy być w stanie tak łatwo ich obserwować.
      Znalezienie samaru może wskazywać po pierwsze na to, że bardzo gorące jowisze mogą zawierać mniej lekkich pierwiastków niż atmosfery innych egzoplanet, po drugie zaś, że zawierają one bardzo mało pary wodnej i tlenu, z którymi samar reaguje.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Supermasywna czarna dziura, pędząca z prędkością 1 650 000 kilometrów na godzinę, przemieszcza się przez przestrzeń międzygalaktyczną, ciągnąc za sobą gigantyczny ogon gwiazd i materii gwiazdotwórczej. Niezwykły, jedyny taki znany nam obiekt, zauważył przypadkiem Teleskop Kosmiczny Hubble'a.
      Za czarną dziurą o masie 20 milionów mas Słońca podąża ogon z nowo narodzonych gwiazd. Ma on długość 200 000 lat świetlnych, jest więc dwukrotnie dłuższy niż średnica Drogi Mlecznej i rozciąga się od czarnej dziury, aż po jej galaktykę macierzystą, z której się wydostała. W ogonie musi znajdować się olbrzymia liczba nowo powstałych gwiazd, gdyż całość ma aż połowę jasności swojej galaktyki macierzystej.
      Astronomowie nie są oczywiście w stanie dostrzec samej czarnej dziury, ale widzą skutki jej oddziaływania. Widzą zatem długi ogon gwiazd i materii gwiazdotwórczej, na którego jednym końcu znajduje się oddalona od nas o 7,5 miliarda lat świetlnych galaktyka RCP 28, a na drugim wyjątkowo jasno świecący obszar. Naukowcy przypuszczają, że obszar ten to albo dysk akrecyjny wokół czarnej dziury, albo też gaz, który został podgrzany do wysokich temperatur przez wdzierającą się w niego, pędzącą z olbrzymią prędkością czarną dziurę. Gaz na czele czarnej dziury jest podgrzewany przez falę uderzeniową generowaną przez czarną dziurę pędzącą z prędkością ponaddźwiękową, mówi Pieter van Dokkum z Yale University.
      To był całkowity przypadek. Przyglądałem się obrazom z Hubble'a i zobaczyłem niewielką smużkę. Pomyślałem, że to promieniowanie kosmiczne wywołało zaburzenia obrazu. Jednak, gdy wyeliminowaliśmy promieniowanie kosmiczne, smużka nadal nam była. I nie wyglądała jak coś, co wcześniej widzieliśmy, dodaje van Dokkum.
      Naukowcy postanowili się bliżej przyjrzeć tajemniczemu zjawisku i wykorzystali spektroskop z W. M. Keck Observatories na Hawajach. Zobaczyli jasną strukturę i po badaniach doszli do wniosku, że została ona utworzona przez supermasywną czarną dziurę, która wydobyła się ze swojej galaktyki.
      Zdaniem van Dokkuma i jego zespołu, wyrzucenie czarnej dziury to skutek licznych kolizji. Do pierwszej z nich doszło około 50 milionów lat temu, gdy połączyły się dwie galaktyki. Ich supermasywne czarne dziury utworzyły układ podwójny i zaczęły wirować wokół siebie. Po jakimś czasie doszło do zderzenia z kolejną galaktyką. Ta również zawierała supermasywną czarną dziurę. Utworzył się niestabilny układ trzech czarnych dziur. Około 39 milionów lat temu jedna z nich przejęła część pędu z dwóch pozostałych i została wyrzucona z galaktyki.
      Gdy pojedyncza czarna dziura odleciała w jedną stronę, dwie pozostałe krążące wokół siebie czarne dziury zostały odrzucone w drugą stronę. Po przeciwnej stronie galaktyki naukowcy zauważyli bowiem coś, co może być oddalającym się układem dwóch czarnych dziur, a w samym centrum galaktyki nie zauważono obecności żadnej czarnej dziury.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzięki teleskopowi Gemini North na Hawajach udało się wykryć najbliższą Ziemi czarną dziurę. Obiekt Gaia BH1 ma masę 10-krotnie większą od Słońca i znajduje się w odległości 480 parseków (ok. 1560 lat świetlnych) od Ziemi w Gwiazdozbiorze Wężownika.
      Dziurę odkryto dzięki temu, że krąży wokół niej żółty karzeł typu widmowego G o masie 0,93 mas Słońca i metaliczności podobnej do słonecznej. Jest to więc gwiazda tego samego typu, co Słońce. Weź Układ Słoneczny, wsadź czarną dziurę tam, gdzie jest Słońce, a Słońce tam, gdzie jest Ziemia i masz obraz tego układu, wyjaśnia główny autor badań Kareem El-Badry, astrofizyk z Center for Astrophysics | Harvard & Smithsonian i Instytutu Astronomii im. Maksa Plancka. Okres orbitalny gwiazdy wokół Gai BH1 wynosi aż 185,6 ziemskich dni, jest więc dłuższy niż jakikolwiek znany nam okres orbitalny w podobnym układzie.
      Wielokrotnie ogłaszano odkrycie podobnych systemów, jednak niemal wszystkie te stwierdzenia zostały z czasem obalone. Tutaj mamy pierwsze jednoznaczne odkrycie w naszej galaktyce gwiazdy typu słonecznego na szerokiej orbicie wokół czarnej dziury o masie gwiazdowej, dodaje El-Badry.
      Obecne modele astronomiczne nie wą w stanie wyjaśnić, w jaki sposób mógł powstać taki system. Przede wszystkim dlatego, że skoro mamy czarną dziurę o masie 10-krotnie większej od masy Słońca, to musiała ona powstać z gwiazdy o masie co najmniej 20-krotnie większej od masy Słońca. To oznacza, że mogła ona istnieć zaledwie przez kilka milionów lat. Jeśli zaś obie gwiazdy – czyli ta, która zamieniła się w czarną dziurę i ta, która wokół niej krąży – powstały w tym samym czasie, to bardziej masywna z gwiazd na tyle szybko powinna zmienić się w czerwonego olbrzyma, pochłaniając towarzyszącą gwiazdę, że towarzyszka nie zdążyłaby wyewoluować do etapu gwiazdy ciągu głównego podobnej do Słońca. Nie wiadomo, jak towarzyszka czarnej dziury przetrwała etap czerwonego olbrzyma drugiej z gwiazd. Modele teoretyczne, które zakładają taką możliwość, mówią, że gwiazda o masie Słońca powinna znajdować się na znacznie ciaśniejszej orbicie wokół czarnej dziury.
      To oznacza, że w naszym rozumieniu tworzenia się i ewolucji czarnych dziur w układach podwójnych znajdują się spore luki, co sugeruje, że istnienie niezbadana dotychczas populacja czarnych dziur w takich układach.
      Trzeba tutaj przypomnieć, że rok temu poinformowano, iż wokół czerwonego olbrzyma V723 Mon, w odległości 460 parseków (ok.1500 lat świetlnych) od Ziemi, krąży najbliższa nam czarna dziura. Po jakimś czasie okazało się, że w układzie tym nie ma czarnej dziury.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...