Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Sammy Phang z Politechniki w Queensland uważa, że skanowanie tęczówki stanie się czymś powszechnie wykorzystywanym w ciągu najbliższych 10-20 lat. Technologia ta da nam łatwy dostęp do konta w banku czy do naszego mieszkania, bez konieczności noszenia ze sobą kart oraz kluczy albo zapamiętywania jakichkolwiek haseł. Jest ona stosowana również obecnie, do tej pory nie udawało się jednak przezwyciężyć pewnych utrudnień. W różnych warunkach oświetleniowych zmieniała się wielkość źrenicy, a więc wygląd tęczówki. Czasami zmiana była tak znaczna, że kompletnie zaburzało to pracę układu rozpoznającego wzór.

Phang stworzyła więc oprogramowanie, które potrafi ocenić zmiany zachodzące w tęczówce w różnych warunkach oświetleniowych. W zależności od nich, źrenica może mieć 0,8 lub 8 mm średnicy. Pani inżynier zastosowała kamerę, która pracuje z szybkością 1200 klatek na sekundę. Dzięki niej udało się prześledzić ruchy powierzchni tęczówki i stwierdzić, jak jej wygląd zmienia się pod wpływem wahań rozmiarów źrenicy. Studium wykazało, że u każdej osoby tęczówka porusza się inaczej.

Kiedy w różnych warunkach oświetleniowych porównywano prawdziwy wygląd tęczówki z obrazem wygenerowanym przez program, okazało się, że są one zbliżone, co może znacznie usprawnić proces weryfikacji.

Wzór tęczówki jest charakterystyczny tylko dla danego człowieka (nie zmienia się też z wiekiem). Co ciekawe, tęczówka prawego oka nie jest taka sama, jak tęczówka oka lewego.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Co ciekawe, tęczówka prawego oka nie jest taka sama, jak tęczówka oka lewego.

Tak więc, trzeba pamiętać, że jeżeli będziemy musieli skanować tęczówkę oka, należy pamiętać żeby przystawić odpowienie oko :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Oko – narząd wzroku człowieka – pod wieloma względami zachwyca i zdumiewa nie tylko precyzją widzenia oraz możliwością rozróżniania milionów barw, ale również umiejętnością funkcjonowania w niezwykle szerokim przedziale intensywności światła, która w naturalnych warunkach potrafi zmieniać się nawet o czynnik równy dziesięciu miliardom!
      Takie wyzwanie wymaga od fotoreceptorów dysponowania krańcowo odmiennymi, a nawet pozornie sprzecznymi atrybutami: z jednej strony bardzo wysoką czułością, z drugiej zaś strony fotostabilnością. Łączenie tego typu skrajności możliwe jest dzięki aktywności wielu mechanizmów regulacyjnych, funkcjonujących na różnych poziomach organizacji narządu wzroku. Wśród nich ważnym oraz doskonale znanym jest zwężanie oraz rozszerzanie źrenicy w odpowiedzi na zmiany intensywności światła, przypominające działanie przysłony fotograficznej.
      Okazuje się, iż w oku człowieka funkcjonuje również inny ważny mechanizm regulacyjny, przypominający z kolei działanie okularów fotochromowych. Mechanizm ten dynamicznie osłabia intensywność światła docierającego do fotoreceptorów przy wysokich natężeniach, działając w przeciwnym kierunku przy niskim poziomie oświetlenia. W tę nieznaną dotychczas aktywność regulacyjną na poziomie molekularnym zaangażowane są bezpośrednio luteina oraz zeaksantyna, barwniki ksantofilowe obecne w siatkówce oka człowieka, w szczególności w jej centralnym obszarze zwanym plamką żółtą.
      Odkrycie tego mechanizmu zostało właśnie ogłoszone przez międzynarodowy zespół badaczy pracujących pod kierunkiem prof. Wiesława Gruszeckiego z Uniwersytetu Marii Curie-Skłodowskiej w Lublinie. Zespół został utworzony w celu realizacji projektu badawczego w programie TEAM Fundacji na rzecz Nauki Polskiej, współfinansowanym w ramach Programu Operacyjnego Inteligentny Rozwój Unii Europejskiej.
      Jak mówi prof. Gruszecki, lider projektu: Aktywność interdyscyplinarnego zespołu złożonego z fizyków, medyków oraz chemików, zarówno eksperymentalnych, jak i reprezentujących podejścia obliczeniowe, stworzyła unikalne możliwości badania mechanizmów molekularnych funkcjonujących w oku człowieka oraz poszukiwania odpowiedzi na pytania formułowane z perspektywy wielu, dopełniających się obszarów poznawczych. Co równie ważne, zaangażowanie w pracach zespołu uznanych ekspertów, jak prof. Robert Rejdak z Uniwersytetu Medycznego w Lublinie czy prof. Jacek Czub z Politechniki Gdańskiej, ramię w ramię z adeptami nauki – doktorantami oraz studentami – stanowiło „mieszankę wybuchową” doświadczenia i młodzieńczego entuzjazmu, czyniąc naszą współpracę nie tylko dynamiczną, twórczą i wydajną, ale również pełną radości oraz satysfakcji na poziomie relacji społecznych.
      Badacze pokazali, że ksantofile obecne w plamce żółtej oka, w odpowiedzi na zmiany intensywności światła, ulegają odwracalnej fotoizomeryzacji z konfiguracji molekularnej trans do cis, skutkującej zmianą orientacji tych barwników w błonach lipidowych. Co istotne, tego typu zmiana położenia w stosunku do płaszczyzny siatkówki oraz kierunku padających promieni powoduje radykalne zmiany pochłaniania światła przez tę grupę barwników. Przejawia się to przepuszczaniem większej liczby fotonów w kierunku fotoreceptorów, gdy poziom natężenia jest niski, oraz pochłanianiem promieniowania w warunkach jego nadmiernej intensywności.
      Aktywność ta chroni siatkówkę przed fotouszkodzeniami w warunkach silnego oświetlenia, ułatwiając jednocześnie widzenie barwne oraz precyzyjne przy stosunkowo słabym świetle. Jak podkreślają badacze w swoim artykule, dodatkową, istotną cechą odkrytego mechanizmu jest jego bardzo krótki czas aktywacji (poniżej jednej tysięcznej sekundy) w stosunku do typowych reakcji źrenicy (czasy dłuższe niż 0,5 sekundy). Oznacza to, że ochrona fotoreceptorów włącza się automatycznie, zanim jeszcze dotrze do naszej świadomości informacja o zagrożeniu.
      Co równie istotne, źrenica zwęża się jedynie do średnicy ok. 2 mm, pozostawiając niechronioną centralną część siatkówki, która jest odpowiedzialna za widzenie barwne oraz precyzyjne. Ochrona tego właśnie obszaru realizowana jest przez barwniki ksantofilowe oraz przez mechanizm regulacyjny porównany przez badaczy do „żaluzji” otwieranych i zamykanych na poziomie molekularnym w odpowiedzi na zmiany intensywności światła. Fakt, iż zasadniczym elementem aktywnym tych „żaluzji” są cząsteczki luteiny oraz zeaksantyny, które nie są syntetyzowane w organizmie człowieka, wskazuje na konieczność uwzględnienia ich w diecie tak, aby oczy służyły nam zarówno przy słabym, jak i intensywnym oświetleniu przez długie lata naszego życia.
      O skrajnie negatywnych skutkach niedoboru luteiny oraz zeaksantyny w diecie świadczy utrata widzenia spowodowana degeneracją plamki żółtej w siatkówce oka postępującą wraz z wiekiem (AMD, ang. Age-Related Macular Degeneration). Na szczęście w zadaniu komponowania diety oraz doboru właściwych produktów żywnościowych pomaga nam zmysł wzroku, na co wskazuje fakt, iż luteina i zeaksantyna, jako barwniki ksantofilowe, charakteryzują się ciepłą, żółtopomarańczową barwą – mówi prof. Gruszecki.
      Praca przedstawiająca odkrycie mechanizmu „żaluzji molekularnych” w siatkówce oka człowieka ukazała się w czasopiśmie The Journal of Physical Chemistry.
      Jak zauważają autorzy artykułu, warty podkreślenia jest fakt, iż podobny proces odwracalnej fotoizomeryzacji barwników polienowych wykorzystany został przez naturę na drodze ewolucji biologicznej jako centralny mechanizm leżący u podstaw funkcjonowania dwóch zasadniczo odmiennych aktywności na poziomie fizjologicznym w oku człowieka. Fotoizomeryzacja cis-trans retinalu w rodopsynie uruchamia kaskadę sygnałów w procesie widzenia, zaś fotoizomeryzacja luteiny i zeaksantyny w plamce żółtej odpowiada za kształtowanie dynamicznej regulacji intensywności światła docierającego do fotoreceptorów na drodze mechanizmu „żaluzji molekularnych”.
      W poniższym załączniku dostępny jest artykuł wraz z grafiką przedstawiającą ideę eksponatu w muzeum nauki, obrazującego aktywność mechanizmu „żaluzji molekularnych” w oku człowieka.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Studenci medycyny od dekad uczą się, że oczy komunikują się z mózgiem za pomocą jednego typu sygnałów, pobudzających. Jednak naukowcy z Northwestern University odkryli właśnie, że część neuronów siatkówki wysyła też sygnały hamujące. Naukowcy zauważyli również, że ten sam zestaw neuronów jest zaangażowany w takie działania jak synchronizacja rytmu dobowego z cyklem dnia oraz ze zwężaniem źrenicy w reakcji na jasne światło. Postanowili się więc przyjrzeć temu bliżej.
      Okazało się, że wysyłane z oka sygnały hamujące zapobiegają zresetowaniu się rytmu dobowego w reakcji na przytłumione światło i zapobiegają zwężaniu się źrenic, gdy jest mało światła. Oba te zjawiska zapewniają nam odpowiednie widzenie i funkcjonowanie za dnia. Sądzimy, że badania te mogą pomóc nam w zrozumieniu, dlaczego nasze oczy są tak wrażliwe na światło, ale podświadome reakcje naszego organizmu są stosunkowo niewrażliwe, mówi główna autorka badań, Tiffany Schmidt.
      W ramach badań Schmidt i jej zespół zablokowali u myszy neurony wysyłające sygnały hamujące. Wówczas za pomocą przytłumionego światła łatwiej było zmienić rytm dobowy myszy. To wskazuje, że sygnały z oczu w sposób aktywny powstrzymują nasz organizm przed zmianą rytmu dobowego w reakcji na przytłumione światło. To niespodziewane zjawisko. Ma to jednak sens, gdyż nie chcielibyśmy, by nasze organizmy zmieniały rytm dobowy w reakcji na zwykłe zmiany oświetlenia. Zmiana rytmu dobowego jest pożądana tylko wtedy, gdy rzeczywiście dochodzi do dużych zmian ilości dostępnego światła, stwierdziła Schmidt.
      Naukowcy zauważyli też, że po zablokowaniu sygnałów hamujących z oczu, źrenice myszy były znacznie bardziej wrażliwe na światło. Sądzimy, że mechanizm ten zapobiega kurczeniu się źrenic w słabym oświetleniu. Do rozszerzonej źrenicy wpada więcej światła, więc lepiej widzimy w takich warunkach. To częściowo wyjaśnia, dlaczego nasze źrenice zwężają się dopiero gdy jasne światło stanie się jeszcze jaśniejsze.
      Ze szczegółami badań można zapoznać się na łamach Science.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzięki ponad 100-godzinnemu skanowaniu w aparacie do rezonansu magnetycznemu uzyskano najbardziej jak dotąd szczegółowy obraz 3D ludzkiego mózgu. Naukowcy podkreślają, że rozdzielczość jest tak doskonała, że na obrazie można potencjalnie dostrzec obiekty o średnicy poniżej 0,1 mm. Wideo i dane są publicznie dostępne.
      Mogąc obejrzeć najdrobniejsze szczególiki różnych struktur, np. ciała migdałowatego, akademicy mają nadzieję zrozumieć, w jaki sposób niewielkie zmiany anatomiczne wiążą się z zaburzeniami, w tym zespołem stresu pourazowego (PTSD). Zdjęcia mają potencjał, by zaawansować wiedzę nt. ludzkiej anatomii w zdrowiu i chorobie.
      Zespół z Massachusetts General Hospital w Bostonie badał mózg 58-letniej kobiety, która zmarła na wirusowe zapalenie płuc. Jej podarowany do badań mózg uznano za zdrowy. Po zakonserwowaniu przechowywano go przez blisko 3 lata.
      Przed rozpoczęciem skanowania Amerykanie wyprodukowali specjalną sferoidalną obudowę uretanową. Miała ona podtrzymywać mózg i jednocześnie umożliwiać wydostawanie się bąbli powietrza. Zabezpieczony mózg trafił do maszyny na prawie 5 dni.
      Obrazy w tak wysokiej rozdzielczości uzyskano dzięki temu, że 1) mózg był całkowicie nieruchomy (badania nie zakłócały np. procesy fizjologiczne, w tym oddech czy przepływ krwi), 2) skanowanie trwało tak długo, a 3) naukowcy dysponowali 7-teslowym urządzeniem.
      Wyniki zostały opublikowane w piśmie bioRxiv.
       


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Czemu starsi kierowcy powodują wypadki głównie na skrzyżowaniach? Psycholodzy twierdzą, że mamy do czynienia nie tylko z pogorszeniem wzroku czy wydłużeniem czasu reakcji, ale i ze złymi przyzwyczajeniami, które - co pocieszające - można wyeliminować dzięki programowi treningowemu.
      Alexander Pollatsek, który sam jest kierowcą po siedemdziesiątce, podkreśla, że duży odsetek przypadków niezachowywania dostatecznej ostrożności na skrzyżowaniu jest raczej wynikiem strategii czy nastawienia, a nie problemów z mózgiem. To problem z oprogramowaniem, a nie sprzętem. Bojąc się, że na kogoś najadą, starsi kierowcy skupiają się na samochodzie z przodu. Niestety, ta strategia nie przydaje się na skrzyżowaniu, ponieważ najczęściej zdarzają się tu uderzenia z boku. Nie wystarczy patrzeć przed siebie, trzeba też przeskanować "flanki".
      Pollatsek przeanalizował ze współpracownikami wyniki dwóch wcześniejszych studiów. W ramach pierwszego porównywano starszych kierowców powyżej 70. r.ż. z młodszymi doświadczonymi kierowcami w wieku 25-55 lat. Badani jeździli prawdziwym samochodem, jednak pokonywana przez nich trasa była wyświetlaną symulacją. Kierowcy zbliżali się do 3 typów skrzyżowania i mieli skręcić. W przypadku pierwszego wzdłuż głównej ulicy przebiegało wzniesienie. Gdyby nadjeżdżał drugi samochód, przez dłuższy czas nie byłoby go widać. W przypadku dwóch pozostałych skrzyżowań - bez względu na to, czy skręcało się z ulicy podporządkowanej w główną, czy z głównej w boczną - widok zasłaniały drzewa. Problem sprawiały też łuki drogi. Okazało się, że starsze osoby rzadziej i krócej patrzyły na krytyczny obszar, skąd mógł się wyłonić inny pojazd.
      W drugim studium oceniano skuteczność programu treningowego. Starszych kierowców rozlosowano do 3 grup. Nagrywano ich podczas jazdy samochodem z domu do samodzielnie wybranego celu. Zadanie jednej z grup (kontrolnej) się na tym kończyło, jednak dwie pozostałe przeszły trening: bierny lub aktywny. Grupa pasywna wysłuchała 30-40-min wykładu na temat niebezpieczeństw czyhających na skrzyżowaniach i prawidłowych sposobów ich pokonywania. Grupa z aktywnym nauczaniem obejrzała nagranie własnej jazdy. Wskazywano popełnione błędy, choć psycholodzy ujawnili, że w większości przypadków nie było to konieczne, bo ludzie sami wcześniej dostrzegali swoje uchybienia. Potem przychodził czas na ćwiczenie w symulatorze prawidłowego skanowania wzrokiem i skręcania oraz wykład - taki sam jak w grupie z biernym treningiem. Przy ponownym teście grupy kontrolna i z pasywnym treningiem nadal jeździły źle, lecz przedstawiciele 3. zaczęli prowadzić jak młodsi kierowcy (a wzrok ani tempo reagowania nie uległy przecież nagłej poprawie). Po roku nadal było widać efekty uczenia.
    • przez KopalniaWiedzy.pl
      Źrenice zwężają się wraz ze zwiększaniem natężenia światła. Chroni to wnętrze gałki ocznej przed uszkodzeniami. Sprawę komplikuje jednak ostatnie studium psychologów z Uniwersytetu w Oslo, którzy wykazali za pomocą złudzenia wzrokowego, że zwężenie źrenic nie jest wyłącznie reakcją na warunki oświetleniowe. Wystarczy, że przez błąd w percepcji myślimy, że jest jaśniej.
      Podczas eksperymentu Bruno Laeng i Tor Endestad z Wydziału Psychologii Uniwersytetu w Oslo pokazywali badanym karty, na których widniały 2 rysunki. Oba odbijały tyle samo światła, ale jeden (np. Morning sunlight, czyli Światło poranka) wydawał się odbijać go więcej niż drugi (w tym przypadku Evening dusk, Wieczorna szarówka), przez co wydawał się jaśniejszy. Za pomocą kamer na podczerwień naukowcy śledzili zmiany w średnicy źrenic. Okazało się, że źrenica zwężała się nieco bardziej podczas fiksowania wzroku na obiektach, którym przypisywano większą jasność.
      Oznacza to, że nasz mózg próbuje przewidywać, co za chwilę nastąpi i instruuje źrenice, jak powinny w związku z tym zadziałać (odruchy źreniczne nie zależą zatem całkowicie od autonomicznego układu nerwowego). Tym razem popełnia jednak błąd. Norwegowie stwierdzili, że jest on szybko naprawiany, bo gdy ochotnicy mogli przyglądać się obrazkom nieco dłużej, dokonywano korekty. Mózg orientował się, że nie ma żadnych różnic w jasności i przy Świetle poranka źrenice otwierały się tak samo jak przy Wieczornej szarówce.
      Laeng i Endestad wykorzystali w studium 4 rysunki. Dwa dotyczyły trójkąta Kanizsy, który wydaje się jaśniejszy od otoczenia, chociaż nawet go nie narysowano (dzieje się tak, bo mózg tworzy subiektywne kontury), a reszta to wariacje na temat iluzji Asahi (Morning sunlight). Prof. Akiyoshi Kitaoka z Ritsumeikan University stworzył ją w 2005 r. Pomysłodawcą Evening dusk (także w zakresie nazwy) jest Laeng. Rysunek wykonał Kitaoka, który na swojej witrynie internetowej podkreśla, że przestrzeń ograniczona płatkami wydaje się ciemniejsza od otoczenia, mimo że w rzeczywistości taka nie jest.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...