Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Światło włącza przełącznik

Recommended Posts

Zespół naukowców z California Institute of Technology w Pasadenie, kierowany przez Ahmeda H. Zewaila informuje o ciekawym zjawisku zarejestrowanym dzięki technice ultraszybkiej mikroskopii elektronowej (ang. Ultrafast Electron Microscopy – UEM). Metoda ta, łącząca mikroskopię elektronową z obserwacją zjawisk przy użycu femtosekundowych impulsów światła laserowego, zapewnia ogromną dokładność, zarówno pod względem precyzji pomiaru czasu, jak i rozdzielczości obrazu. Używając jej, naukowcy zauważyli nietypowe zachowanie mikroskopijnych igiełek kryształów miedzi połączonej z TCNQ (7,7,8,8-tetracyjanochinonodimetanem) – charakterystyczną cechą tego półprzewodnika jest niemal jednowymiarowa budowa cząsteczkowa. Okazało się, że pod wpływem światła laserowego wspomniane kryształy wydłużają się, a po wyłączeniu oświetlenia, wracają one do poprzednich rozmiarów. Innym efektem tego zjawiska są wywołane laserem pęknięcia kryształów, mierzące od 10 do 100 nm. Po ponownym oświetleniu szczeliny te zamykają się, by znów się pojawić gdy laser przestaje działać. Naukowcy informują, że zachowanie to jest w pełni powtarzalne, a siła efektu zależy od ilości dostarczonej energii. Oba zjawiska mogą zostać wykorzystane w przyszłych układach nanoelektronicznych i nanomechanizmach. Dzięki nim budowniczowie takich urządzeń otrzymają bowiem mikroskopijne przełączniki sterowane światłem. Zewail jest pewien, że technika UEM wkrótce dostarczy kolejnych odkryć w takich dziedzinach, jak biologia, nanotechnologia oraz inżynieria materiałowa.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z Cornell University udowodnili, że przechodzenie promienia światła przez kabel optyczny może być kontrolowane przez inny promień światła. Możliwe jest zatem stworzenie całkowicie optycznego przełącznika.
      Obecnie w elektronice używamy przełączników elektrycznych. Zastąpienie ich technologią optyczną pozwoli na przyspieszenie pracy układów scalonych przy jednoczesnym zmniejszeniu poboru energii.
      Z idealną sytuacją mielibyśmy do czynienia, gdyby za pomocą jednego fotonu udało się sterować przepływem światła. Grupa profesora Alexandra Gaeta przybliżyła nas do momentu powstania idealnego przełącznika.
      Uczeni wypełnili światłowód fotoniczny oparami rubidu, a następnie na jednym jego końcu uruchomili promień podczerwony o długości fali 776 nanometrów, a na drugim wysłali sygnał kontrolny o długości 780,2 nanometra.
      W tak wąskiej „rurze", jaką jest światłowód, doszło do silnej interakcji światła z atomami rubidu. Gdy promień kontrolny był włączony, atomy absorbowały obie długości światła. Jednak gdy promień kontrolny wyłączano, główny promień przechodził przez światłowód bez przeszkód.
      Bardzo ważny jest fakt, że do wypełnienia funkcji kontrolnych wystarczyło mniej niż 20 fotonów, a przełączanie odbywało się z prędkością pięciu miliardowych części sekundy.
    • By KopalniaWiedzy.pl
      Czy możliwe jest, żeby kopnięta sterta cegieł poukładała się sama, tworząc chodnik? Nie bardzo. Jeszcze mniej prawdopodobne jest, żeby cegły same utworzyły budynek. Tymczasem w skali nano jest to możliwe i uczyniono pierwszy krok ku takiej technologii.
      Cząsteczki chemiczne mają tę przewagę nad cegłami, że same się łączą w różne struktury. Trudno jednak zmusić je do tworzenia struktur takich, jakie byśmy chcieli. W dwóch wymiarach takie sztuczki już się udawały: kiedy w cienką warstwę jakiejś substancji wrzucamy odpowiednio dobraną cząsteczkę „gościnną", cząsteczki samorzutnie zorganizują się wokół takiego wtrącenia. Takie struktury jednak pozostawały zawsze dwuwymiarowe, a w nanotechnologii chcemy tworzyć struktury trójwymiarowe.
      Naukowcy z brytyjskiego University of Nottingham po czterech latach badań jako pierwsi osiągnęli przełom, zmuszając cząsteczki do samorzutnej organizacji w struktury trójwymiarowe. Udało im się to osiągnąć, pokrywając powierzchnię jednocząsteczkową warstwą molekuł kwasu tetrakarboksylowego i wrzucając w nią cząsteczki fulerenu C60(tzw. buckyball, sferyczna, pusta w środku cząsteczka złożona z 60 atomów węgla). Cząsteczki kwasu automatycznie organizują się wokół boków kulistego fulerenu. To sposób na tworzenie dodatkowych warstw cząsteczek i znaczący krok w kierunku samoorganizujących się nanostruktur.
      Nie jest to pierwsze osiągnięcie profesora Neila Champnessa i jego zespołu. Wcześniej odkryli oni, jak wykorzystać wiązania wodorowe do łączenia cząstek DNA w molekularne struktury, a niedawno opublikowali studium opisujące, jak nieregularne cząsteczki są adsorbowane na strukturach powierzchniowych.
      Studium na temat tworzenia trójwymiarowych, samoorganizujących się struktur ukazało się w prestiżowym periodyku Nature Chemistry.
    • By KopalniaWiedzy.pl
      Brak wody pitnej to problem wielu rejonów świata. Niestety, jednocześnie większość z nich jest zbyt biedna, żeby w pełni rozwiązać ten problem. Częstym przypadkiem jest brak możliwości, technologii a zwłaszcza pieniędzy na stworzenie sieci wodociągowej, stacji uzdatniania wody, czy podobnej infrastruktury. Wynalazek południowoafrykańskich naukowców - saszetka wielkości torebki herbaty - ma umożliwić uzdatnienie nawet bardzo brudnej wody tanio i skutecznie.
      Autorem rozwiązania jest Eugene Cloete, wykładowca Stellenbosch University w RPA, mikrobiolog, specjalista od systemów uzdatniania wody i nanotechnologii. Właśnie nanotechnologia jest kluczem do opracowanego filtra. Saszetka ma taki kształt i wielkość, że można ją łatwo dopasować do typowej szyjki butelki. Specjalna kompozycja materiałów: węgla aktywowanego oraz przede wszystkim bakteriobójczych nanowłókien pochłania zanieczyszczenia i zabija mikroorganizmy.
      Jak zapewnia Marelize Botes, jedna torebka wystarcza do oczyszczenia całej butelki nawet bardzo brudnej wody. Po oczyszczeniu woda ma być równie wysokiej jakości, jak kupowana woda butelkowana. Zużyty filtr może być bezpiecznie wyrzucony - rozkłada się w ciągu kilku dni, nie pozostawia śladu i nie jest toksyczny dla człowieka.
      Celem Eugene Cloete'a było stworzenie taniej metody, prostej w użyciu i niewymagającej infrastruktury. Docelowy koszt ma wynosić około pół centa amerykańskiego za sztukę, co jest ceną przystępną nawet dla bardzo ubogich terenów.
      Obecnie trwają badania wynalazku przez południowoafrykańską instytucję standaryzującą. Jeśli zakończą się pomyślnie - w co twórcy wierzą - przetestowany filtr ma trafić do sprzedaży jeszcze w tym roku.
    • By KopalniaWiedzy.pl
      Profesor Shaul Yalovsky z Wydziału Biologii Molekularnej i Ekologii Roślin Uniwersytetu w Tel Awiwie zidentyfikował rodzaj "przełącznika", który mówi komórkom roślinnym kiedy mają rosnąć. Odkrycie to może znakomicie ułatwić walkę z nowotworami u ludzi.
      Naukowiec jest bowiem w stanie samodzielnie manipulować tym przełącznikiem i decydować o kształcie, wzroście komórek i tkanek oraz o ich odpowiedzi na infekcje wirusowe i bakteryjne.
      Wspomniany "przełącznik' to molekuła tłuszczu, która wpływa na pracę protein zwanych ROP. Zespół pracujący pod kierunkiem Yalovsky'ego i współpracujący z nimi profesor Yoav Henis i doktor Joel Hirsch ustalili, że wspomniana molekuła jest niezbędna dla aktywności ROP.
      Struktury bardzo podobne do ROP istnieją też w ciele ludzkim i są odpowiedzialne za włączanie procesu obumierania (apoptozy) w komórkach nowotworowych. Jest więc nadzieja, że wiedzę nabytą podczas badań "przełącznika" roślinnych ROP uda się wykorzystać do powstrzymywania wzrostu guzów nowotworowych.
      Profesor Yalovsky jest zdania, że uda się tak manipulować ludzkimi proteinami, że będzie można decydować o szybszym podziale komórek, co przyda się tam, gdzie konieczne jest leczenie ran, lub też o spowolnieniu lub zatrzymaniu podziału i tym samym zatrzymaniu np. wzrostu nowotworu.
      Naukowcy specjalizujący się w badaniu roślin wiedzą, że ROP łączą się z molekułą GTP, która następnie rozpada się, tworząc molekułę GDP. Gdy ROP jest połączony z GDP staje się nieaktywny. Profesor Yalovsky wyprodukował odpowiednio zmutowaną molekułę, która zapobiega łączeniu się ROP z GTP, tworząc w ten sposób inhibitor.
      Odkrycie izraelskich naukowców przyda się również w rolnictwie. Do roślin będzie można np. wprowadzić zmutowaną molekułę, by reagowały one tak, jakby były zagrożone przez patogeny. W ten sposób uruchomi się naturalne mechanizmy obronne roślin i zmniejszy zapotrzebowanie na środki chemiczne.
    • By KopalniaWiedzy.pl
      Nie kończą się nowe pomysły i koncepcje na zastosowanie grafenu - pojedynczej warstwy atomów węgla - w nanotechnologii. Do listy jego wielu atrakcyjnych cech trzeba dodać jeszcze jedną: dobrze współpracuje z DNA.
      Stworzenie nowych bioczujników, pozwalających na szybkie i bezbłędne identyfikowanie przyczyn chorób, to zajęcie wielu naukowców i laboratoriów na świecie. Narodowe Laboratorium Północno-Zachodniego Pacyfiku, należące do Departamentu Energii Stanów Zjednoczonych oraz Uniwersytet Princeton osiągnęły w tej dziedzinie wymierny sukces, łącząc grafen z ludzkim DNA.
      Podczas badań okazało się, że pojedyncza spirala DNA silnie i trwale łączy się z powłoką grafenową. To podsunęło myśl do sporządzenia czujnika, wykrywającego konkretne DNA w badanych próbkach. Pojedyncza spirala DNA z genu poszukiwanego czynnika chorobotwórczego jest umieszczana na powierzchni grafenu. Ponieważ naturalnym stanem cząstek DNA jest podwójna spirala, oddzielona nitka „poszukuje" odpowiadającej sobie pary. Zatem kiedy taki czujnik zanurzymy w krwi, lub innym płynie ustrojowym, umocowana na grafenie pojedyncza nić DNA będzie działać jak bardzo wybiórczy haczyk, łapiący swój odpowiednik. Jeśli poszukiwany czynnik „złapie przynętę" i przyczepi się do czujnika, ten generuje sygnał, który można zarejestrować.
      Sprawdzono, jaka jest czułość i wybiórczość projektowanego bioczujnika. Podczas prób z dołączanymi do wolno pływających nici DNA fluorescencyjnymi molekułami wykazano, że „łapanie" dokładnie poszukiwanych fragmentów jest dwukrotnie silniejsze niż łapanie fragmentów jedynie podobnych, które mogłyby fałszować wyniki.
      Zbadano też trwałość takiego czujnika - i tu dokonano kolejnego rewelacyjnego odkrycia. Okazało się, że grafen stanowi doskonałą ochronę nici DNA. Podczas prób z DNAzą - enzymem trawiącym DNA - okazało się, że podczas gdy wolno pływające nici są rozkładane natychmiast, nici DNA przytwierdzone do grafenowej powierzchni unikają zniszczenia przez 60 minut.
      Prostota działania i wykonania, oraz wysoka trwałość i skuteczność mogą sprawić, że rozpowszechnienie się tego typu czujników stanie się przełomem w diagnostyce medycznej. Nie koniec to jednak planów zespołu badawczego związanych z odkrytymi właściwościami grafenu. Skoro grafen tak dobrze współdziała z DNA, chcą poszukać sposobu na jej wykorzystanie do dostarczania leków bezpośrednio do chorych komórek, a może nawet wykorzystanie jej w terapii genowej.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...