Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Żyła złota w żołądku termita

Rekomendowane odpowiedzi

Amerykańscy naukowcy badający pewien gatunek termita, który zamieszkuje lasy Kostaryki, przypadkiem natrafili na potencjalną żyłę złota. Skarb znajduje się w... przewodzie pokarmowym termita i może posłużyć do produkcji paliwa przyszłości.

Całkowite odejście przemysłu motoryzacyjnego od coraz droższych paliw kopalnych, których największe zasoby znajdują się w niestabilnych regionach świata, to kwestia najbliższych 30 lat.

Naukowcy pracują nad innymi paliwami, które mogłyby napędzać pojazdy. Jeden z pomysłów to biopaliwa. Ich pierwsza, obecnie produkowana, generacja tworzona jest z roślin jadalnych, co ma tę negatywną stronę, że powoduje wzrost cen żywności. Uczeni już pracują jednak nad kolejną generacją. Te paliwa będą powstawały z niejadalnej celulozy. Do produkcji paliw można by więc wykorzystać np. odpady przemysłu drzewnego. Tutaj jednak pojawia się problem. Technologia taka jest obecnie zbyt droga i skomplikowana, by można wprowadzić ją na przemysłową skalę.

Z pomocą przychodzi jednak kostarykański termit. Przewód pokarmowy tych zwierząt podzielony jest na kilka „przedziałów”, a w każdym z nich żyją inne bakterie rozkładające drewno zjadane przez termita.

Amerykańscy uczeni pobrali próbki tych bakterii i zsekwencjonowali ich genom. Dzięki temu mają nadzieję, że uda się zaprzęgnąć bakterie z układu pokarmowego termita do przemysłowej produkcji biopaliw.

A układ ten jest niezwykle wydajny. Teoretycznie może on przetworzyć kartkę papieru A4 na dwa litry wodoru – mówi Andreas Brune z Instytutu Maksa Plancka w Marburgu.

Odkrycie budzi więc olbrzymie nadzieje, jednak, jak zauważają specjaliści, zastosowanie bakterii znalezionych wewnątrz termita nie będzie łatwe. Najpierw trzeba odnaleźć te geny, które odpowiadają za rozłożenie celulozy na glukozę, a następnie spróbować wprowadzić proces produkcyjny na skalę przemysłową.

W projekt badawczy zaangażowane są takie instytucje jak należący do Departamentu Energii Joint Genome Institute, California Institute of Technology (Caltech), specjalizująca się w biopaliwach firma Verenium, kostarykański Narodowy Instytut Bioróżnorodności oraz IBM-owskie Thomas J. Watson Research Center.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mała poprawka: stwierdzenie "rozłożyć celulozę na cukier" jest z założenia niepoprawne, bo celuloza jest cukrem :) Zamiast tego proponuję "na glukozę", bo to ona jest finalnym produktem rozkładu tego cukru.

 

Pozdrawiam!

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mała poprawka: stwierdzenie "rozłożyć celulozę na cukier" jest z założenia niepoprawne, bo celuloza jest cukrem :P Zamiast tego proponuję "na glukozę", bo to ona jest finalnym produktem rozkładu tego cukru.

 

Pozdrawiam!

 

Zrobione :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Teoretycznie może on przetworzyć kartkę papieru A4 na dwa litry wodoru

 

czyli cukier na wodór

 

a wodór utlenić (paliwo) - no to wydaje się że zgazowywanie drewna jest wydajniejsze i dobrze poznane , ale co tam.... lasy kostaryki i te plaże i jeszcze płacą a w zamian:

 

Dzięki temu mają nadzieję, że uda się zaprzęgnąć bakterie z układu pokarmowego termita do przemysłowej produkcji biopaliw.

;D ;D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Termity oddzieliły się od innych karaczanów przed 150 milionami lat i wyewoluowały do życia społecznego. Obecnie niektóre gatunki termitów tworzą gigantyczne kolonie składające się z milionów osobników żyjących w ziemi. Inne, w tym termity żyjące w drewnie, żyją w niedużych koloniach liczących kilka tysięcy osobników. Naukowcy z Okinawy odkryli, że termity drzewne odbyły dziesiątki podróży transoceanicznych, dzięki którym są tak zróżnicowane jak obecnie.
      Termity drzewne, Kalotermitidae, są często postrzegane jako prymitywne, gdyż tworzą małe kolnie i oddzieliły się od innych termitów dość wcześnie, już około 100 milionów lat temu. Jednak tak naprawdę niewiele wiemy o tej rodzinie termitów, mówi główny autor badań, doktor Aleš Buček z Okinawskiego Podyplomowego Uniwersytetu Nauki i Technologii (OIST) . Dotychczas większość badań nad tą rodziną koncentrowało się nad jednym gatunkiem, często występującym w domach mieszkalnych i traktowanym jak szkodnik.
      Naukowcy z OIST przez 30 lat kolekcjonowali przedstawicieli Kalotermitidae. Do analizy wybrali przedstawicieli 120 gatunków. Niektóre z nich były reprezentowane przez wiele próbek zebranych w różnych miejscach. Te 120 gatunków to ponad 25% wszystkich znanych Kalotermitidae. W OIST wykonano sekwencjonowanie DNA owadów.
      Okazało się, że w ciągu ostatnich 50 milionów lat termity przekroczyły oceany co najmniej 40 razy, pływając m.in. pomiędzy Ameryką Południową a Afryką. W skali milionów lat podróże te skutkowały dużym różnicowaniem się Kalotermitidae. One są bardzo dobre w podróżach transoceanicznych. Ich domem jest drewno, które spełnia rolę niewielkiego statku, mówi Buček.
      Z badań wynika, że większość rodzajów Kalotermitidae pochodzi z Ameryki Południowej. Uczeni potwierdzili też, że w ostatnich wiekach ludzie wzięli udział w większości procesu rozprzestrzeniania się termitów.
      Badania podważają też powszechne przekonanie, jakoby termity drzewne wiodły prymitywny tryb życia. Okazało się bowiem, że wśród najstarszych gatunków Kalotermitidae są i takie, które tworzą wielkie kolonie zamieszkujące różne kawałki drewna połączone ze sobą podziemnymi tunelami.
      To pokazuje, jak mało wiemy o termitach, zróżnicowaniu ich styli życia oraz organizacji ich życia społecznego. Im więcej dowiemy się o ich zachowaniu i ekologii, tym lepiej odtworzymy ewolucję ich życia społecznego i dowiemy się, dlaczego odniosły taki sukces, dodaje profesor Tom Bourguignon, jeden z autorów badań.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Już wkrótce niewygodne kombinezony ochronne czy odkażanie po opuszczeniu obfitującego w bakterie czy niebezpieczne związki chemiczne rejonu mogą zastąpić ubrania z samoczyszczącej się bawełny. By tak się stało, wystarczy je wystawić na oddziaływanie światła.
      Nowa tkanina może znaleźć zastosowanie w odzieży ochronnej dla pracowników służby zdrowia, przetwórstwa spożywczego czy rolników, a także personelu wojskowego – wyjaśnia Ning Liu z Uniwersytetu Kalifornijskiego w Davis.
      Liu zaimpregnowała bawełnianą tkaninę kwasem 2-antrachinonokarboksylowym (ang. 2-anthraquinone carboxylic acid, 2-AQC). Tworzy on mocne wiązania z wchodzącą w skład bawełny celulozą, dlatego w odróżnieniu od obecnie stosowanych samoczyszczących czynników, trudno go zmyć lub sprać. Co ważne, nie dochodzi do zmiany właściwości tkaniny (wcześniej się to nie udawało).
      Po ekspozycji 2-AQC na światło powstają reaktywne formy tlenu, np. rodnik wodorotlenowy (in. hydroksylowy, •OH) czy nadtlenek wodoru (H2O2), które zabijają bakterie i rozkładają związki organiczne, takie jak pestycydy.
      Naukowcy podkreślają, że choć 2-AQC jest stosunkowo drogi, istnieją tańsze zastępniki.
    • przez KopalniaWiedzy.pl
      Samochody przyszłości mogą być napędzane paliwem uzyskiwanym ze... starych gazet. Tak przynajmniej twierdzą uczeni z Tulane University, którzy zidentyfikowali nowy szczep bakterii nazwany TU-103. Bakterie te zmieniają stare gazety w butanol, a uczeni wykorzystują w swoich eksperymentach stare numery Times Picauyne.
      TU-103 to pierwszy znany szczep bakterii, który tworzy butanol wprost z celulozy. Celuloza obecna w zielonych roślinach to najobficiej występujący materiał organicznych. Wielu marzy o tym, by nauczyć się zmieniać ją w butanol. Każdego roku w samych tylko Stanach Zjednoczonych na wysypiska trafiają co najmniej 323 miliony ton materiałów zawierających celulozę - mowi Harshad Velankar, badacz zatrudniony w laboratorium Davida Mullina.
      Naukowcy odkryli TU-103 w zwierzęcych odchodach i opracowali sposób na nakłonienie bakterii do produkcji butanolu. Najważniejsze, że TU-103 tworzy butanol wprost z celulozy - mówi Mullin.
      Nowo odkryta bakteria jako jedyny mikroorganizm produkujący butanol może robić to w obecności tlenu. Inne bakterie tworzące butanol wymagają środowiska beztlenowego, co podnosi koszty produkcji.
      Butanol lepiej sprawdza się w roli biopaliwa, gdyż w przeciwieństwie do etanolu może być spalane w tradycyjnych silnikach, nadaje się do transportu istniejącymi rurociągami, ma słabsze właściwości żrące i można uzyskać z niego więcej energii.
    • przez KopalniaWiedzy.pl
      Naukowcy z NASA prowadzą testy biopaliwa z kurzego tłuszczu. Odbywają się one w Ośrodku Badania Lotu imienia Hugh L. Drydena. Amerykanie wykorzystują do tego odrzutowy samolot pasażerski Douglas DC-8.
      Specjaliści oceniają osiągi oraz emisję produktów spalania. Testy stanowią część Alternative Aviation Fuel Experiment II (AAFEX II). Samo paliwo ochrzczono Obrabianym Wodorem Odnawialnym Paliwem do Silników Odrzutowych.
      Naprawdę produkuje się je z kurzego tłuszczu. Siły Powietrzne Stanów Zjednoczonych kupiły wiele tysięcy galonów tego tłuszczu i na potrzeby eksperymentu dostarczyły NASA ok. 8 tys. galonów (30283 l) – wyjaśnia Bruce Anderson.
      Zespół ma się zająć testowaniem przygotowanej w proporcjach 50:50 mieszanki biopaliwa i zwykłego paliwa odrzutowego (Jet Propellant 8, JP-8), a także zrealizować scenariusz lotu wyłącznie na biopaliwie lub na JP-8.
      Poza pracownikami NASA w AAFEX II biorą udział przedstawiciele 17 organizacji, firm i agend federalnych. Przedstawiciele Centrum Badawczego imienia Johna H. Glenna zapewnili aparaturę do pomiaru emisji gazowej i cząsteczkowej.
      Wykorzystanie w statkach powietrznych alternatywnych paliw, z biopaliwami włącznie, stanowi kluczowy element strategii znacznego zmniejszenia wpływu lotnictwa na środowisko, a także uzależnienia od importowanej ropy naftowej – podkreśla Ruben Del Rosario z Centrum im Glenna.
    • przez KopalniaWiedzy.pl
      Celuloza z osłonic, morskich strunowców, może oddziaływać na zachowanie komórek mięśni szkieletowych. Naukowcy z Uniwersytetu w Manchesterze twierdzą, że to dobry sposób na uzyskanie działającej tkanki mięśniowej.
      Polisacharyd w formie miniwąsów jest kilkakrotnie mniejszy od komórek mięśniowych, mimo to wpływa na ich porządkowanie. To niezwykle ważne, ponieważ wiele tkanek ciała, w tym mięśnie, zawiera uporządkowane włókna, które zapewniają im wytrzymałość i sztywność. Celuloza już teraz znajduje różne zastosowania medyczne, np. w opatrunkach, ale po raz pierwszy zaproponowano, by wykorzystać ją do utworzenia mięśni szkieletowych.
      Celuloza z osłonic jest szczególnie dobra do "produkcji" tkanki mięśniowej, ma bowiem pewne charakterystyczne właściwości. Doktorzy Stephen Eichhorn i Julie Gough oraz doktorant James Dugan wyekstrahowali polisacharyd z miniaturowych wąsów o średnicy zaledwie kilkudziesięciu nanometrów. Kiedy wąsy ułożono równolegle do siebie, powodowały one szybkie porządkowanie i fuzję miocytów.
      Tworzenie sztucznych mięśni, które można by wykorzystać do zastępowania uszkodzonych lub chorych naturalnych, to wielka szansa dla całych rzesz pacjentów. Choć mamy do czynienia ze złożonym procesem [ekstrakcji], potencjalne zastosowania są bardzo interesujące – przekonuje dr Eichhorn.
      Celulozą interesują się naukowcy z całego świata. Dzieje się tak z powodu jej unikatowych właściwości, poza tym jest ona surowcem odnawialnym. Jak widać, przyda się przy precyzyjnej inżynierii mięśniowej, niewykluczone też, że podczas odtwarzania innych uporządkowanych struktur, np. nerwów i więzadeł.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...