Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Zwierzęta na różne sposoby bronią się przed drapieżnikami. Uciekają, przystępują do ataku lub odrzucają różne części ciała, np. ogon. Fachowo nazywa się to autotomią. Jej typem jest ewisceracja, czyli odruch wyrzucania narządów wewnętrznych. Badacze z Uniwersytetu w Portoryko odkryli, że pewien gatunek strzykwy (Holothuria glaberrima) traci w ten sposób cały przewód pokarmowy, a w jego regenerację jest zaangażowany ten sam mechanizm komórkowy, co w gojenie się ran. Stwarza to nadzieję także dla ludzi.

Profesor Jose Garcia-Arraras uważa, że strzykwy i ich umiejętność regenerowania tkanek są pewnego rodzaju analogią muszek owocowych i uzyskanej dzięki nim wiedzy nt. genów. Ogórki morskie nauczą nas, jak możemy naprawić sami siebie.

Wielu ludzi, także naukowców, postrzega strzykwy oraz inne szkarłupnie, takie jak rozgwiazdy czy wężowidła, jako coś wyjątkowego. Powodem są ich zdolności regeneracyjne. My jednak wykazaliśmy, że używają tych samych zwykłych mechanizmów zarówno do odbudowy, jak i gojenia ran.

Wszystkie organizmy posiadają do pewnego stopnia zdolność regeneracji, ale strzykwy dochodziły do siebie w ciągu 4 tygodni po pocięciu na 3-5 mm fragmenty. Mechanizm odtworzenia jelita był taki sam, jak przy zdrowieniu naruszonej tkanki mięśniowej, nerwowej oraz powłok skórnych i polegał na przebudowywaniu substancji międzykomórkowej i dedyferencjacji, czyli odróżnicowywaniu się komórek mięśniowych.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

No to trochę przesadziłeś , bo miliony komórek u ludzi też się wymieniają. A co 12 lat wszystkie są wymienione ,nawet kości masz nowe. 8)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Japońscy naukowcy odkryli, że dwa gatunki ślimaków morskich - Elysia cf. marginata i Elysia atroviridis - potrafią odrzucić i zregenerować całe ciało, wraz z sercem i innymi narządami wewnętrznymi. Badacze sugerują, że zwierzęta te są w stanie przetrwać tak skrajną formę autotomii dzięki fotosyntezie przeprowadzanej przez chloroplasty przejęte od zjadanych glonów.
      Byliśmy zaskoczeni, widząc głowę poruszającą się tuż po autotomii. Myśleliśmy, że bez serca i innych ważnych narządów wkrótce obumrze, ale ku naszemu ponownemu zaskoczeniu doszło do regeneracji całego ciała - opowiada Sayaka Mitoh z Nara Women's University.
      Do odkrycia doszło przez przypadek. Sayaka Mitoh jest doktorantką w laboratorium Yoichi Yusy. Co ważne, w laboratorium tym hoduje się ślimaki. Pewnego dnia w 2018 r. Mitoh zobaczyła głowę Elysia cf. marginata przemieszczającą się bez reszty ciała.
      W artykule z pisma Current Biology Mitoh i Yusa ujawnili, że oddzielona od serca i ciała głowa przemieszczała się samodzielnie tuż pod autotomii. Na przestrzeni dni rana z tyłu głowy się zamykała. W ciągu paru godzin głowa stosunkowo młodych ślimaków zaczynała żerować na glonach. Regeneracja serca zachodziła w ciągu tygodnia. Po 3 tygodniach regeneracja była zakończona. Jeden z osobników zrobił coś takiego 2-krotnie.
      Pięć z 15 wyhodowanych w laboratorium młodych Elysia cf. marginata wykonało skrajną autotomię 226-336 dni po wylęgu z jaj. Podobne zjawisko zaobserwowano u 3 z 82 E. atroviridis; spośród nich 2 osobniki zregenerowały ciała w ciągu tygodnia.
      Mitoh i Yusa nie są pewni, jak ślimaki morskie tego dokonują. Mitoh podejrzewa, że mogą za to odpowiadać komórki podobne do macierzystych. Po co ślimakom tak skrajna postać autotomii? To również nie jest jasne, ale niewykluczone, że pomaga im to w pozbyciu się wewnętrznych pasożytów, które hamują ich rozmnażanie. W ramach przyszłych badań naukowcy chcą sprawdzić, jakie wskazówki uruchamiają autotomię całego ciała i prześledzić mechanizmy leżące u podłoża opisanego zjawiska na poziomie tkankowym i komórkowym.
      Oddzielone od reszty ciała głowy starszych osobników (wyklutych z jaj 480-520 dni wcześniej) nie żerowały i obumierały w ciągu ok. 10 dni; Japończycy podejrzewają, że u bardzo starych osobników korzyści z takiej autotomii byłyby znikome, ponieważ prawdopodobnie nie mogą się one już rozmnażać. Jeśli jednak rzeczywiście chodzi o pozbycie się endopasożytów, niekiedy takie ryzyko może się opłacać. Stare osobniki i tak już długo nie pożyją, [więc jeśli zginą, nie stanie się nic niespodziewanego czy odległego w czasie], a istnieje szansa, że [jakimś cudem] uda się przeżyć i zregenerować ciało bez pasożytów.
      I w przypadku młodych, i starych osobników odrzucone ciała nie odtwarzały głowy, ale także się poruszały i reagowały na dotyk przez kilka dni, a nawet miesięcy.
      Elysia cf. marginata i E. atroviridis uzyskują chloroplasty ze zjadanych glonów; zjawisko to jest nazywane kleptoplastią. Dzięki temu ślimaki mogą wykorzystywać możliwości związane z fotosyntezą. Ta zdolność pozwala im przeżyć po autotomii wystarczająco długo, by zregenerować ciało.
      Sądzimy, że to najbardziej ekstremalna forma autotomii i regeneracji w naturze - podsumowuje Mitoh.
       


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Nikogo nie dziwi widok konia w czapraku, jednak wdzianko, które zakrywa ciało od karku po ogon aż do kopyt, to już zupełnie inna sprawa. Ostatnio australijscy miłośnicy wyścigów konnych mogli podziwiać odzianego w taki właśnie kombinezon championa sprinterów Hay Lista.
      Kombinezon zakłada się zaraz po biegu, by przyspieszyć regenerację. Ponieważ ogier odniósł w ciągu kariery szereg urazów, trener John McNair pomyślał, że warto spróbować, a było nad czym myśleć, bo koszt zakupu uniformu to aż 900 dolarów australijskich.
      To zasadniczo kombinezon uciskowy. Widzi się korzystających z takiego rozwiązania kolarzy, piłkarzy i innych sportowców. Ma pomagać przy zmęczeniu mięśni i ogólnej regeneracji. Przez kilka ostatnich tygodni wypróbowaliśmy piankę na koniu i różnica jest naprawdę ogromna - podkreśla McNair.
      Hidez Recovery Suit bazuje na metodzie stopniowego ucisku, która wspomaga krążenie i sprawia, że do różnych grup mięśni dociera więcej tlenu. Pianka opóźnia też ponoć początek bólu mięśni.
      Wydawać by się mogło, że ubranie konia w coś takiego zajmuje dużo czasu, jednak jak ujawnia trener, dzięki zamkom po 1,5 min jest już po wszystkim.
    • przez KopalniaWiedzy.pl
      Amerykańscy naukowcy opracowali nową technikę zespalania przerwanych nerwów. Zabieg trwa ponoć kilka minut, a nerw ma zacząć pracować jak dawniej nie po miesiącach czy latach, a po 2-4 tygodniach. Zespół odwołał się do mechanizmu komórkowego wykorzystywanego do naprawy uszkodzonych aksonów przez bezkręgowce. Spełnienie marzeń rehabilitanta, a przede wszystkim pacjentów...
      Jak zapewnia prof. George Bittner z Uniwersytetu Teksańskiego, po kilku dniach pacjent, w tym przypadku zwierzę, częściowo odzyskuje funkcje, za które odpowiada dany nerw. Po 2 tygodniach, góra miesiącu nerw działa właściwie jak przed przerwaniem.
      Naukowcy badali mechanizm wykorzystywany do naprawy błon przez wszystkie komórki zwierzęce, ale szczególnie skoncentrowali się na bezkręgowcach, u których zdolność regenerowania uszkodzonych aksonów jest bardziej rozwinięta niż u ssaków.
      Bittner odkrył, że u kręgowców akson odcięty od ciała komórki (perikarionu) nie degeneruje się w ciągu kilku dni, jak się to dzieje u ssaków, lecz utrzymuje się przy życiu przez miesiące, a nawet lata. Aksony proksymalnego i dystalnego końca przerwanego nerwu mogą się u bezkręgowców ponownie połączyć w ciągu 7 dni, zapewniając tempo rekonwalescencji nieporównywalnie lepsze niż u ssaków. U ssaków aksony z kikuta dystalnego degenerują się w ciągu 3 dni. Kikut proksymalny musi rosnąć miesiącami lub latami, by przywrócić kontrolę nad mięśniami czy obszarami czuciowymi, często z mniejszą dokładnością i w niepełnym zakresie.
      Amerykanie zespalali nerw kulszowy przerwany w górnej części uda. Po tygodniu nerw odzyskiwał część swoich funkcji (gryzonie mogły poruszać kończyną), a po 2-4 tygodniach działał prawie normalnie; w kilku przypadkach niemal w 100%. Niestety, w relacji prasowej nie ujawniono żadnych szczegółów dotyczących procedury czy wspomnianego mechanizmu komórkowego.
      Badania prowadzone nie tylko na Uniwersytecie Teksańskim, ale i przez szkoły medyczne Harvardu oraz Vanderbilt University mają pozwolić na zgromadzenie tylu danych, by udało się uzyskać pozwolenie na testy kliniczne.
    • przez KopalniaWiedzy.pl
      Kwasy omega-3, które występują m.in. w olejach rybich, chronią nerwy przed uszkodzeniem i przyspieszają ich regenerację. To doskonała wiadomość dla pacjentów, którzy wskutek choroby czy urazu zmagają z bólem, paraliżem czy osłabieniem siły mięśniowej.
      Naukowcy z Queen Mary, University of London, których artykuł ukazał się w Journal of Neuroscience, skoncentrowali się na komórkach nerwów obwodowych. Mogą się one regenerować, ale mimo postępów w zakresie chirurgii, dobre rezultaty osiąga się raczej przy lekkich urazach.
      Na początku Brytyjczycy przyglądali się izolowanym mysim neuronom. Rozciągając je lub pozbawiając dopływu tlenu, symulowali uszkodzenia powstające podczas wypadku lub urazu. Oba zabiegi zabiły wiele komórek, ale podanie kwasów omega-3 zadziałało jak zabezpieczenie, znacznie ograniczając śmierć komórkową. W następnym etapie akademicy badali nerw kulszowy gryzoni. Stwierdzili, że dzięki kwasom omega-3 regenerował się szybciej i w większym zakresie. Dodatkowo zmniejszało się prawdopodobieństwo zaniku mięśni w następstwie uszkodzenia nerwu.
    • przez KopalniaWiedzy.pl
      Na Johns Hopkins University powstał żel, który, jak pokazują wstępne badania, może pomóc w całkowitej regeneracji skóry po ciężkich oparzeniach. Badania na mysich tkankach wykazały, że dzięki żelowi dochodzi do odtworzenia skóry, naczyń krwionośnych, mieszków włosowych oraz gruczołów. Leczenie polega na nałożeniu na ranę bazującego na wodzie polimerowego żelu.
      Badacze poinformowali na łamach Proceedings of the National Academy of Sciences, iż żel daje znacznie lepsze wyniki niż obecnie stosowane metody.
      Nasze leczenie ułatwiało wzrost nowych naczyń krwionośnych i regenerację warstw skóry, w tym mieszków włosowych i gruczołów - mówi profesor Sharon Gerecht, główna autorka badań.
      Uczona dodaje, że żel jest prosty w produkcji i można go wytwarzać na masową skalę. Jej zdaniem, jako że substancja nie zawiera leków ani komponentów biologicznych, Agencja Żywności i Leków (FDA) prawdopodobnie zakwalifikuje żel jako urządzenie, co znacznie ułatwi jego dopuszczenie na rynek.
      Żel nie był jeszcze testowany na ludziach. Najpierw planowane są kolejne testy na zwierzętach, ale profesor Gerecht wierzy, iż nowy środek może trafić na rynek już za kilka lat.
      Profesor chirurgii John Harmon z Johns Hopkins School of Medicine, jest zachwycony nowym żelem. Mówi, że podczas testów uzyskano całkowitą regenerację skóry, co nie jest możliwe do osiągnięcia współczesnymi metodami. Harmon mówi, że w USA każdego roku leczonych jest 100 000 oparzeń trzeciego stopnia. Nowy żel będzie zatem niezwykle przydatny. Co więcej, zdaniem Harmona, przyda się on też np. podczas leczenia owrzodzeń stóp u cukrzyków.
      Doktor Guoming Sun, który od trzech lat udoskonalał żel pod kątem ułatwienia wzrostu naczyń krwionośnych mówi, że substancja bardzo przyspiesza gojenie ran i wzrost nowych tkanek. W przypadku oparzeń im szybciej zachodzi ten proces, tym mniejsze ryzyko powstania blizn.
      Naukowcy z Johnsa Hopkinsa początkowo chcieli wypełnić żel komórkami macierzystymi i substancjami przyspieszającymi ich wzrost. Postanowili jednak przetestować „czysty' żel. Byliśmy zaskoczeni faktem, że doszło do kompletnej regeneracji skóry bez obecności czynników biologicznych - mówi Gerecht.
      Naukowcy ciągle nie rozumieją, jak działa ich żel. Przeprowadzone testy pokazały, że w ciągu 21 dni po nałożeniu substancja została całkowicie wchłonięta, a skóra nadal się odradzała, aż przypominała zdrową tkankę.
      Żel wykonany jest z wody, w której rozpuszczono dekstran. Być może to fizyczna struktura hydrożelu ułatwia naprawę skóry - spekuluje Gerecht. Uczeni nie wykluczają, że skład żelu w jakiś sposób angażuje w naprawę krążące we krwi komórki macierzyste szpiku kostnego. Może żel jakoś sygnalizuje komórkom, by stały się nową skórą i naczyniami krwionośnymi - stwierdził Harmon.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...