Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Powstała najdokładniejsza mapa rozkładu ciemnej materii we wszechświecie

Rekomendowane odpowiedzi

Międzynarodowa grupa badawcza opublikowała najobszerniejszą i najdokładniejszą mapę rozkładu ciemnej materii we wszechświecie. Mapę stworzono dzięki urządzeniu Hyper Suprime-Cam (HSC) znajdującemu się w japoński teleskopie Subaru na Hawajach.

Jej powstanie było możliwe dzięki temu, że siła grawitacji zagina światło przechodzące w pobliżu dużych mas materii. Zjawisko to, zwane słabym soczewkowaniem grawitacyjnym, powoduje, że odległe galaktyki wydają się nieco zdeformowane. To zniekształcenie jest dla astronomów kopalnią informacji na temat rozkładu materii we wszechświecie. Dzięki HSC obliczono deformacje w obrazach około 10 miliona galaktyk.

Teleskop Suberu pozwolił zajrzeć głębiej niż podczas wcześniejszych badań tego typu. Na przykład podczas Dark Energy Survey naukowcy mieli okazję oglądać większą część wszechświata i z podobną precyzją, jednak byli w stanie dokonać obliczeń tylko dla najbliższych obszarów wszechświata. HSC ma węższe ale za to głębsze pole widzenia.

Naukowcy po utworzeniu mapy za pomocą HSC porównali ją z fluktuacjami przewidywanymi na podstawie obserwacji mikrofalowego promieniowania tła rejestrowanego przez satelitę Planck Europejskiej Agencji Kosmicznej. Pomiary z HSC dawały nieco inne wyniki, lecz były statystycznie spójne z danymi z Plancka. Fakt, że HSC i inne podobne pomiary pokazują, iż materia we wszechświecie jest słabiej zgrupowana, niż wynika to z pomiarów Planck każe zapytać czy ciemna energia zachowuje się tak, jak wynika ze stałej kosmologicznej Einsteina.

Nasza mapa daje nam lepszy obraz tego, jak wiele jest ciemnej energii, mówi nam nieco o jej właściwościach i jak przyspiesza ona rozszerzanie się wszechświata. HSC to wspaniałe uzupełnienie innych badań. Połączenie danych z różnych projektów dostarcza nam potężnego narzędzia pozwalającego na zdobycie coraz więcej informacji o ciemnej materii i ciemnej energii, mówi Rachel Mandelbaum z Carnegie Mellon University.

Dotychczas zebrano dane z pierwszego roku badań. Cały projekt ma potrwać pięć lat, co pozwoli na zebranie większej ilości danych na temat zachowania ciemnej energii, umożliwi lepsze zrozumienie ewolucji galaktyk i gromad galaktyk.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Powstała mapa naszej niewiedzy.

8 godzin temu, KopalniaWiedzy.pl napisał:

Pomiary z HSC dawały nieco inne wyniki, lecz były statystycznie spójne z danymi z Plancka.

Statystyka choć to potężne narzędzie, to w nieodpowiednich rękach może udowodnić dosłownie wszystko, nawet istnienie ciemnej materii.

 

8 godzin temu, KopalniaWiedzy.pl napisał:

Fakt, że HSC i inne podobne pomiary pokazują, iż materia we wszechświecie jest słabiej zgrupowana, niż wynika to z pomiarów Planck każe zapytać czy ciemna energia zachowuje się tak, jak wynika ze stałej kosmologicznej Einsteina.

Nic się nie zgadza, ale co tam. Alleluja i do przodu. O ile pomiary Plancka to rejestracja dość konkretnych danych, to już rozkład ciemnej materii i ciemnej energii to daleko idąca interpretacja i mnożenie bytów.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
9 godzin temu, lester napisał:

Nic się nie zgadza, ale co tam

ale przecież tak działa nauka, w większości to jest obserwacja świata  i dopasowanie do obserwacji naszej ludzkiej interpretacji .  Zdecydowanie mniej  jest przypadków, że najpierw coś udało się odkryć/obliczyć/przewidzieć teoretycznie a następnie potwierdzić to obserwacją.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ja o tym pisze od lat :D

http://wyborcza.pl/7,75400,23981163,kryzys-w-fizyce-spelnia-sie-czarny-scenariusz.html

Cytat

Badanie najprostszych struktur materii i sił nimi rządzących było od półwiecza kopalnią fundamentalnych odkryć, a spekulatywne idee okazywały się zgodne z rzeczywistością. Wielki Zderzacz Hadronów uruchomiony 10 lat temu w CERN miał otworzyć nowe perspektywy, wskazać kierunki dalszych poszukiwań. Nic takiego się nie stało: nie ma odkryć, a stare teorie trzymają się krzepko. W fizyce cząstek nastał kryzys.

Co nie znaczy że LHC był zbyteczny. Tylko uzasadnienie jego budowy było jak to często bywa "pod publikę". Ale nie o to chodzi. To samo uzasadnienie nie sprawdzi się drugi raz.

Tak czy inaczej: stoimy.
Tzn. jakiś tam postęp będzie ale taki postęp jaki ma samochód hamując. Ktoś zaciągnął hamulec.
Może nawet nastąpią drobne modyfikacje Modelu Standardowego, ale to tylko kwestia dopasowania paru klocków.

Być może nawet ktoś zbliży się do teorii wszystkiego, ale najprawdopodobniej okaże się że nie będzie możliwości weryfikacji doświadczalnej.

Edytowane przez thikim

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 30.09.2018 o 08:19, thikim napisał:

To samo uzasadnienie nie sprawdzi się drugi raz

zawsze można się odwołać do potencjalnego militarnego wykorzystania, to raczej zawsze działa.

W dniu 30.09.2018 o 08:19, thikim napisał:

Tak czy inaczej: stoimy.

gdzie tam.... jeszcze nie tak dawno była żywa koncepcja 4 żywiołów i przez tysiąc lat nic się nie zmieniało w niej, nawet jeden przecinek :D

a te kilka dekad w których przyszło nam żyć ma większe osiągnięcia niż całe miliony lat ludzkość osiągnęła do XIII wieku.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
4 godziny temu, tempik napisał:

a te kilka dekad w których przyszło nam żyć ma większe osiągnięcia niż całe miliony lat ludzkość osiągnęła do XIII wieku.

Ano właśnie. To teraz zobacz że poparłeś to co napisałem :)
Ja oczywiście napisałem o dziedzinie która stoi - fundamenty nam stoją. Ale to czeka każdą sensowną dziedzinę. 

Jak zmieniała się kiedyś częstotliwość procesorów a jak dziś się zmienia? Stoi :D

4 godziny temu, tempik napisał:

zawsze można się odwołać do potencjalnego militarnego wykorzystania, to raczej zawsze działa.

No, ja wiem, że taka lufa długa na 1000 km robi wrażenie militarne ale chyba tylko na kobietach :D
Konkurs na pracę doktorską: militarne znaczenie LHC :D oraz Modelu Standardowego :D
Ty tu żartujesz a jest bardzo poważne: 20 mld na LHC to prawie 20 mld mniej na zbrojenia :D

Edytowane przez thikim

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 1.10.2018 o 17:20, thikim napisał:

20 mld na LHC to prawie 20 mld mniej na zbrojenia :D

Czemu "prawie"?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Po 10 latach pionierskiej pracy naukowcy z amerykańskiego SLAC National Accelerator Laboratory ukończyli wykrywacze ciemnej materii SuperCDMS. Dwa pierwsze trafiły niedawno do SNOLAB w Ontario w Kanadzie. Będą one sercem systemu poszukującego dość lekkich cząstek ciemnej materii. Urządzenia mają rejestrować cząstki o masach od 1/2 do 10-krotności masy protonu. W tym zakresie będzie to najbardziej czuły na świecie wykrywacz ciemnej materii.
      Twórcy detektorów mówią, że przy ich budowie wiele się nauczyli i stworzyli wiele interesujących technologii, w tym elastyczne kable nadprzewodzące, elektronikę działającą w ekstremalnie niskich temperaturach czy lepiej izolowane systemy kriogeniczne, dzięki czemu całość jest znacznie bardziej czuła na ciemną materię. A dodatkową zaletą całego eksperymentu jest jego umiejscowienie 2 kilometry pod ziemią, co pozwoli na wyeliminowanie znaczniej części zakłóceń ze strony promieniowania kosmicznego. SNOLAB i SuperCDMS są dla siebie stworzone. Jesteśmy niesamowicie podekscytowani faktem, że detektory SuperCDMS mają potencjał, by bezpośrednio zarejestrować cząstki ciemnej materii i znacząco zwiększyć nasza wiedzę o naturze wszechświata, mówi Jodi Cooley, dyrektor SNOLAB. Zrozumienie ciemnej materii to jedno z najważniejszych zadań nauki, dodaje JoAnne Hewett ze SLAC.
      Wiemy, że materia widzialna stanowi zaledwie 15% wszechświata. Cała reszta to ciemna materia. Jednak nikt nie wie, czym ona jest. Wiemy, że istnieje, gdyż widzimy jej oddziaływanie grawitacyjne z materią widzialną. Jednak poza tym nie potrafimy jej wykryć.
      Eksperyment SuperCDMS SNOLAB to próba zarejestrowania cząstek tworzących ciemną materię. Naukowcy chcą w nim wykorzystać schłodzone do bardzo niskich temperatur kryształy krzemu i germanu. Stąd zresztą nazwa eksperymentu – Cryogenic Dark Matter Search (CDMS). Uczeni mają nadzieję, że w temperaturze o ułamek stopnia wyższej od zera absolutnego uda się zarejestrować wibracje kryształów powodowane interakcją z cząstkami ciemnej materii. Takie kolizje powinny zresztą wygenerować pary elektron-dziura, które – przemieszczając się w krysztale – wywołają kolejne wibracje, wzmacniając w ten sposób sygnał.
      Żeby jednak tego dokonać, detektory muszą zostać odizolowane od wpływu czynników zewnętrznych. Dlatego też eksperyment będzie prowadzony w SNOLAB, laboratorium znajdującym się w byłej kopalni niklu, ponad 2000 metrów pod ziemią.
      Stopień trudności w przeprowadzeniu tego typu eksperymentów jest olbrzymi. Nie tylko bowiem konieczne było stworzenie nowatorskich wykrywaczy, co wymagało – jak już wspomnieliśmy – 10 lat pracy. Wyzwaniem był też... transport urządzeń. Aby chronić je przed promieniowaniem kosmicznym, należało jak najszybciej dostarczy je z USA do Kanady. Oczywiście na myśl przychodzi przede wszystkim transport lotniczy. Jednak im wyżej się wzniesiemy, tym cieńsza warstwa atmosfery nas chroni, zatem tym więcej promieniowania kosmicznego do nas dociera.
      Wybrano więc drogę lądową, ale... naokoło. Pomiędzy Menlo Park w Kalifornii, gdzie powstały wykrywacze, a kanadyjską prowincją Ontario znajdują się Góry Skaliste. Ciężarówka z wykrywaczami musiałaby więc wjechać na sporą wysokość nad poziomem morza, co wiązałoby się z większym promieniowaniem docierającym do detektorów. Dlatego też jej trasa wiodła na południe, przez Teksas. Już następnego dnia po dotarciu do Ontario urządzenia zostały opuszczone pod ziemię, gdzie czekają na instalację. Jeszcze w bieżącym roku do Kanady trafią kolejne SuperCDMS, a wstępne przygotowania do uruchomiania laboratorium mają zakończyć się w 2024 roku. Naukowcy mówią, że po 3-4 latach pracy laboratorium powinno zebrać na tyle dużo danych, że zdobędziemy nowe informacje na temat ciemnej materii.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astronomowie z University of Southampton donoszą o zaobserwowaniu najpotężniejszej znanej kosmicznej eksplozji. Jest ona 10-krotnie jaśniejsza niż jakakolwiek znana supernowa i 3-krotnie jaśniejsza niż najpotężniejsze rozerwanie gwiazdy przez siły pływowe czarnej dziury. Eksplozję AT2021lwx naukowcy obserwują od trzech lat. To bardzo długo, w porównaniu np. z supernowymi, które są widoczne przez kilka miesięcy. Do AT2021lwx doszło przed 8 miliardami lat, gdy wszechświat liczył sobie około 6 miliardów lat.
      Specjaliści sądzą, że to, co obserwują to proces niszczenia olbrzymiej chmury gazu – tysiące razy większej od Słońca – przez czarną dziurę. Części chmury wpadły do czarnej dziury, a powstałe w wyniku tego fale uderzeniowe przemiszczają się przez resztę chmury, która otoczyła czarną dziurę, tworząc kształt obwarzanka.
      AT2021lwx została wykryta w 2020 roku przez Zwicky Transient Facility i potwierdzona przez Asteroid Terrestrial-impact Last Alert System. Te instalacje przeglądają nocne niebo w poszukiwaniu obiektów gwałtownie zmieniających jasność. Takie zmiany mogą wskazywać na obecność supernowej czy przelatujące komety lub asteroidy. Jednak w momencie wykrycia skala eksplozji nie była znana. Pojawienie się na niebie jasnego obiektu zostało zauważone przez algorytm poszukujący supernowych. Jednak supernowe nigdy nie trwają tak długo.
      Naukowcy przeprowadzili więc szereg badań za pomocą różnych teleskopów. Przeanalizowali spektrum światła, zmierzyli linie absorpcji i emisji, co pozwoliło im na określenie odległości do obiektu. Gdy już znamy odległość i wiemy, jak jasny się nam obiekt wydaje, możemy obliczyć jasność obiektu u źródła. Gdy to zrobiliśmy, zdaliśmy sobie sprawę, że jest on ekstremalnie jasny, mówi profesor Sebastian Hönig.
      Jedynymi obiektami, które dorównują AT2021lwx jasnością są kwazary, supermasywne czarne dziury, do których ciągle wpada gaz pędzący z olbrzymią prędkością. W przypadku kwazarów dochodzi do zmian jasności. Raz są jaśniejsze, raz ciemniejsze. Przyjrzeliśmy się danym archiwalnym, z dekady sprzed odkrycia AT2021lwx. Niczego tam nie było i nagle pojawia się najjaśniejszy obiekt we wszechświecie, dodaje profesor Mark Sullivan.
      Zjawisko można interpretować na wiele różnych sposobów, jednak najbardziej prawdopodobnym wyjaśnieniem jest niszczenie przez czarną dziurę gigantycznej chmury gazu, głównie wodoru. Naukowcy mają nadzieję, że w najbliższych latach dzięki nowym urządzeniom, jak Vera Rubin Observatory, znajdą więcej obiektów podobnych do AT2021lwx i będą mogli lepiej je zbadać.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Kosmiczny Jamesa Webba prawdopodobnie znalazł galaktyki, których istnienie przeczy standardowemu modelowi kosmologicznemu. Wydaje się, że są one zbyt masywne jak na czas swoich narodzin.
      Astronomowie z The University of Texas at Austin informują na łamach Nature Astronomy, że sześć z najstarszych i najbardziej masywnych galaktyk zaobserwowanych przez JWST wydaje się przeczyć najbardziej rozpowszechnionym poglądom obowiązującym w kosmologii. Naukowcy szacują bowiem, że galaktyki te narodziły się w ciągu 500–700 milionów lat po Wielkim Wybuchu, a ich masa wynosi ponad 10 miliardów mas Słońca. Jedna z nich wydaje się nawet równie masywna co Droga Mleczna, a jest od niej o miliardy lat młodsza.
      Jeśli szacunki dotyczące masy są prawidłowe, to wkraczamy na nieznane terytorium. Wyjaśnienie tego zjawiska będzie wymagało dodania czegoś całkowicie nowego do teorii formowania się galaktyk lub modyfikacji poglądów kosmologicznych. Jednym z najbardziej niezwykłych wyjaśnień byłoby stwierdzenie, że wkrótce po Wielkim Wybuchu wszechświat rozszerzał się szybciej, niż sądzimy. To jednak mogłoby wymagać dodania nowych sił i cząstek, mówi profesor Mike Boylan-Kolchin, który kierował zespołem badawczym. Co więcej, by tak masywne galaktyki uformowały się tak szybko, w gwiazdy musiałoby zamienić się niemal 100% zawartego w nich gazu. Zwykle w gwiazdy zamienia się nie więcej niż 10% gazu galaktyki. I o ile konwersja 100% gazu w gwiazdy mieści się w teoretycznych przewidywaniach, to taki przypadek wymagałby zupełnie innych zjawisk, niż obserwujemy, dodaje uczony.
      Dane, jakich dostarczył JWST, mogą postawić astronomów przed poważnym problemem. Jeśli bowiem masy i wiek wspomnianych galaktyk zostaną potwierdzone, mogą być potrzebne fundamentalne zmiany w obowiązującym modelu kosmologicznym. Takie, które dotkną też ciemnej materii i ciemnej energii. Jeśli istnieją inne, szybsze sposoby formowania się galaktyk, albo też więcej materii było dostępnej we wczesnym wszechświecie, konieczna będzie radykalna zmiana poglądów.
      Oceny wieku i masy wspomnianych 6 galaktyk to wstępne szacunki. Następnym etapem prac powinno być przeprowadzenie badań spektroskopowych. W ich trakcie może się np. okazać, że czarne dziury w centrach galaktyk tak bardzo podgrzewają otaczający je gaz, że galaktyki są jaśniejsze, zatem wydają się bardziej masywne niż w rzeczywistości. Nie można też wykluczyć, że galaktyki tak naprawdę są młodsze, ale znajdujący się pomiędzy nami a nimi pył zmienia kolor docierającego z nich światła tak, iż jest ono bardziej przesunięte ku czerwieni, zatem wydaje się dochodzić z większej odległości, a zatem z młodszych galaktyk.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Nie możemy bezpośrednio obserwować wczesnego wszechświata, ale być może będziemy w stanie obserwować go pośrednio, badając, w jaki sposób fale grawitacyjne z tamtej epoki wpłynęły na materię i promieniowanie, które obecnie widzimy, mówi Deepen Garg, student z Princeton Plama Physics Laboratory. Garg i jego promotor Ilya Dodin zaadaptowali do badań wszechświata technikę ze swoich badań nad fuzją jądrową.
      Naukowcy badali, w jaki sposób fale elektromagnetyczne rozprzestrzeniają się przez plazmę obecną w reaktorach fuzyjnych. Okazało się, że proces ten bardzo przypomina sposób rozprzestrzeniania się fal grawitacyjnych. Postanowili więc wykorzystać te podobieństwa.
      Fale grawitacyjne, przewidziane przez Alberta Einsteina w 1916 roku, zostały wykryte w 2015 roku przez obserwatorium LIGO. To zaburzenia czasoprzestrzeni wywołane ruchem bardzo gęstych obiektów. Fale te przemieszczają się z prędkością światła.
      Garg i Dodin, wykorzystując swoje spostrzeżenia z badań nad falą elektromagnetyczną w plazmie, opracowali wzory za pomocą których – jak mają nadzieję – uda się odczytać właściwości odległych gwiazd. W falach grawitacyjnych mogą być „zapisane” np. o gęstości materii, przez którą przeszły. Być może nawet uda się w ten sposób zdobyć dodatkowe informacje o zderzeniach gwiazd neutronowych i czarnych dziur.
      To miał być prosty, krótki, sześciomiesięczny program badawczy dla mojego studenta. Gdy jednak zaczęliśmy zagłębiać się w problem, okazało się, że niewiele o nim wiadomo i można na tym przykładzie wykonać pewne podstawowe prace teoretyczne, przyznaje Dodin.
      Naukowcy chcą w niedługiej przyszłości wykorzystać swoje wzory w praktyce. Zastrzegają, że uzyskanie znaczących wyników będzie wymagało sporo pracy.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...