Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Bezprecedensowa utrata lodu w rosyjskiej Arktyce

Recommended Posts

W ciągu ostatnich lat doszło do olbrzymiej destabilizacji Czapy Lodowej Wawiłowa w rosyjskiej Arktyce. Najnowsze badania wykazały, że w roku 2015 lodowiec ten przemieszczał się w tempie nawet 25 metrów dziennie. W epoce ocieplającego się klimatu coraz częściej obserwujemy przyspieszanie ruchu lodowców. Jednak tempo utraty lodu na Wawiłowie jest bezprecedensowe i niespodziewane, mówi główny autor badań, profesor geologii Mike Willis z Colorado University, Boulder.

Lodowce i czapy lodowe podobne do Wawiłowa pokrywają niemal 800 000 kilometrów kwadratowych powierzchni Ziemi. Gdyby wszystkie się roztopiły, poziom oceanów wzrósłby o pół metra. Dotychczas w żadnym przypadku nie obserwowano tak dramatycznych zmian jakie zachodzą w Czapie Lodowej Wawiłowa. To zaś każe podejrzewać, że inne, uznawane za stabilne, struktury tego typu, mogą być bardziej wrażliwe na zmiany klimatyczne, niż się przypuszcza.

Czapa Wawiłowa jest obserwowana od lat za pomocą satelitów. W 2010 roku zauważono, że zaczęła powoli przyspieszać. W 2015 roku doszło do nagłego przyspieszenia. Naukowcy sądzą, że początkowe powolne przyspieszenie miało związek ze zmianą kierunku opadów, do której doszło przez około 500 laty. Do tamtej pory śnieg i deszcz padały głównie z południowego-wschodu. Pięć wieków temu doszło do zmiany i opady nadchodzą głównie z południowego zachodu, więc to zachodnia część zaczęła zmierzać w kierunku oceanu.

„Zimne” czapy lodowe, jak Wawiłow, występują na polarnych pustyniach, gdzie jest niewielka liczba opadów. Zwykle są przymarznięte do podłoża, a ich ruch jest powodowany jedynie uginaniem się lodu pod wpływem grawitacji. Tam, gdzie podłoże znajduje się powyżej poziomu morza, czapy takie nie podlegają zwykle procesom, które zachodzą w lodowcach znajdujących się w cieplejszych regionach.

Naukowcy podejrzewają, że Wawiłow zaczął przyspieszać, gdyż jego podstawa stała się bardziej wilgotna, a jego czoło dotarło do bardzo śliskich osadów morskich. Lód zaczął przyspieszać, a zwiększone tarcie spowodowało, że topił się od spodu, pojawiła się woda, która jeszcze bardziej go przyspieszyła. Część tej wody mogła wymieszać się z gliną znajdującą się pod lodem, wywołując jeszcze większy poślizg. Do roku 2015 wszystkie te czynniki całkowicie zdestabilizowały Wawiłowa. Pod lodem pojawiły się takie warunki, że niemal nie dochodzi tam do tarcia. Czapa jest niezwykle mobilna. Obecnie porusza się z prędkością 5–10 metrów na dobę.

O tym, jak dramatyczne zmiany tam zachodzą, niech świadczy fakt, że przez 30 lat przed przyspieszeniem Czapa Lodowa Wawiłowa zmniejszyła swą grubość o kilka metrów, przesunęła się o 2 kilometry i utraciła około 1,2 km3 lodu. Natomiast w samym tylko 2015 roku przesunęła się o około 4 kilometry, jej grubość zmniejszyła się o 100 metrów i utraciła około 4,5 km3 lodu. Jest mało prawdopodobne, by w epoce globalnego ocieplenia mogła ona odzyskać swoją dawną wielkość.

Dotychczas wielu naukowców sądziło, że polarne czapy lodowe, których podłoże znajduje się powyżej poziomu morza, będą bardzo wolno reagowały na zmiany klimatu. Szybkie załamanie się Wawiłowa każe zweryfikować to przypuszczenie.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Teleskop Webba wykrył w atmosferze planety K2-18b molekuły zawierające węgiel, w tym metan oraz dwutlenek węgla. Odkrycie to kolejna wskazówka, że K2-18b może być planetą hiaceańską (hycean planet). To termin zaproponowany niedawno przez naukowców z Uniwersytetu w Cambridge na określenie hipotetycznej klasy planet. Pochodzi od połączenia słów „wodór” (hydrogen) i „ocean”. Oznacza potencjalnie nadające się do zamieszkania gorące planety pokryte oceanami, które posiadają bogatą w wodór atmosferę. Zdaniem brytyjskich uczonych mogą być bardziej powszechne niż planety typu ziemskiego.
      Jeśli przyjmiemy, że planety hiaceańskie rzeczywiście istnieją i stanowią nową klasę planet, oznacza to, że ekosfera – czyli obszar wokół gwiazdy, w którym istniejące planety mogą podtrzymać życie – jest większy, niż ekosfera oparta wyłącznie na istnieniu wody w stanie ciekłym.
      K2-18b krąży w ekosferze chłodnego karła K2-18 znajdującego się w odległości 120 lat świetlnych od Ziemi w Gwiazdozbiorze Lwa. Jest ona 8,6 razy bardziej masywna od Ziemi. Rozmiary plasują ją pomiędzy wielkością Ziemi a Neptuna. W Układzie Słonecznym nie istnieje żaden „mini-Neptun”, dlatego słabo rozumiemy takie światy. Jeśli zaś K2-18b jest rzeczywiście planetą hiaceańską, jeśli taki typ planet istnieje, mogą być one dobrym celem poszukiwania życia. Tradycyjnie życia poszukiwaliśmy na mniejszych skalistych planetach, jednak atmosfery większych światów hiaceańskich jest łatwiej badać, mówi Nikku Madhusudhan z Uniwersytetu w Cambridge. Kierował on pracami zespołu, który zaproponował istnienie światów hiaceańskich. Właśnie zresztą na podstawie badań K2-18b.
      Obecność w atmosferze tej planety dużych ilości metanu i dwutlenku węgla przy braku amoniaku wspiera hipotezę, że istnieje tam ocean przykryty bogatą w wodór atmosferę. Jakby tego było mało, wstępne dane przekazane przez Webba mogą wskazywać na obecność w atmosferze siarczku dimetylu (DMS). Na Ziemi związek ten jest wytwarzany wyłącznie przez organizmy żywe, a większość DMS obecnego w atmosferze naszej planety zostało wyemitowane przez fitoplankton. Jednak ewentualne potwierdzenie istnienia tego związku w atmosferze K2-18b wymaga dalszych badań.
      Mimo, że planeta znajduje się w ekosferze, a jej atmosfera zawiera molekuły z węglem, nie oznacza to jeszcze, że może na niej istnieć życie. Promień K2-18b jest o 2,6 razy większy od promienia Ziemi. To oznacza, że jej wnętrze prawdopodobnie stanowi lód poddany wysokiemu ciśnieniu, na jego powierzchni znajduje się ocean, a planetę otacza atmosfera cieńsza niż atmosfera Ziemi. Temperatura oceanu może być zbyt wysoka, by mogło powstać w nim życie. Być może jest na tyle wysoka, że nie ma tam wody w stanie ciekłym.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po raz czwarty z rzędu światowe oceany pobiły rekordy ciepła. Kilkunastu naukowców z Chin, USA, Nowej Zelandii, Włoch opublikowało raport, z którego dowiadujemy się, że w 2022 roku światowe oceany – pod względem zawartego w nich ciepła – były najcieplejsze w historii i przekroczyły rekordowe maksimum z roku 2021. Poprzednie rekordy ciepła padały w 2021, 2020 i 2019 roku. Oceany pochłaniają nawet do 90% nadmiarowego ciepła zawartego w atmosferze, a jako że atmosfera jest coraz bardziej rozgrzana, coraz więcej ciepła trafia do oceanów.
      Lijing Cheng z Chińskiej Akademii Nauk, który stał na czele grupy badawczej, podkreślił, że od roku 1958, kiedy to zaczęto wykonywać wiarygodne pomiary temperatury oceanów, każda dekada była cieplejsza niż poprzednia, a ocieplenie przyspiesza. Od końca lat 80. tempo, w jakim do oceanów trafia dodatkowa energia, zwiększyło się nawet 4-krotnie.
      Z raportu dowiadujemy się, że niektóre obszary ocieplają się szybciej, niż pozostałe. Swoje własne rekordy pobiły Północny Pacyfik, Północny Atlantyk, Morze Śródziemne i Ocean Południowy. Co gorsza, naukowcy obserwują coraz większą stratyfikację oceanów, co oznacza, że wody ciepłe i zimne nie mieszają się tak łatwo, jak w przeszłości. Przez większą stratyfikację może pojawić się problem z transportem ciepła, tlenu i składników odżywczych w kolumnie wody, co zagraża ekosystemom morskim. Ponadto zamknięcie większej ilości ciepła w górnej części oceanów może dodatkowo ogrzać atmosferę. Kolejnym problemem jest wzrost poziomu wód oceanicznych. Jest on powodowany nie tylko topnieniem lodu, ale również zwiększaniem objętości wody wraz ze wzrostem jej temperatury.
      Ogrzewające się oceany przyczyniają się też do zmian wzorców pogodowych, napędzają cyklony i huragany. Musimy spodziewać się coraz bardziej gwałtownych zjawisk pogodowych i związanych z tym kosztów. Amerykańska Administracja Oceaniczna i Atmosferyczna prowadzi m.in. statystyki dotyczące gwałtownych zjawisk klimatycznych i pogodowych, z których każde przyniosło USA straty przekraczające miliard dolarów. Wyraźnie widać, że liczba takich zjawisk rośnie, a koszty są coraz większe. W latach 1980–1989 średnia liczba takich zjawisk to 3,1/rok, a straty to 20,5 miliarda USD/rok. Dla lat 1990–1999 było to już 5,5/rok, a straty wyniosły 31,4 miliarda USD rocznie. W ubiegłym roku zanotowano zaś 18 takich zjawisk, a straty sięgnęły 165 miliardów dolarów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Tokijskiego nagrali spontaniczne ruchy noworodków i niemowląt i połączyli je z komputerowym modelem mięśniowo-szkieletowym. W ten sposób przeanalizowali sposób komunikacji między mięśniami oraz odczucia w całym organizmie małego człowieka. Odkryli w tych spontanicznych ruchach wzorce interakcji między mięśniami i stwierdzili, że takie spontaniczne poruszanie się przygotowuje dziecko do wykonywania sekwencyjnych celowych ruchów w przyszłości.
      Badania te pomogą lepiej nam zrozumieć zarówno rozwój sensomotoryczny człowieka, jego ewolucję, jak i wcześniej diagnozować zaburzenia rozwojowe.
      Dzieci poruszają się już w łonie matki, wykonując pozornie bezcelowe ruchy, do których dochodzi bez żadnej stymulacji zewnętrznej. Jeśli udałoby się lepiej je rozumieć i opisać rolę, jaką odgrywają w rozwoju człowieka, można by na bardzo wczesnym etapie wychwytywać sygnały takich chorób jak na przykład dziecięce porażenie mózgowe.
      Dotychczas badania nad rozwojem sensomotorycznym skupiały się na właściwościach kinetycznych, aktywności poszczególnych mięśni i stawów. Japońscy naukowcy przyjrzeli się aktywności całego ciała oraz przesyłanych przez nie sygnałów. Połączenie modelu mięśniowo-szkieletowy z wiedzą z zakresu neurologii pozwoliło zauważyć, że te spontaniczne ruchy, które wydają się być bezcelowe, przyczyniają się do koordynacji rozwoju sensomotorycznego.
      Naukowcy najpierw nagrywali ruchy stawów u 12 noworodków młodszych niż 10 dni oraz u 10 niemowląt w wieku około 3 miesięcy. Następnie za pomocą modelu komputerowego badali aktywność mięśni i przepływ impulsów nerwowych w skali całego organizmu. Następnie za pomocą algorytmów oszacowali przebieg interakcji pomiędzy impulsami a aktywnością mięśni. Ze zdumieniem zauważyli, że ruchy dzieci były bardziej przypadkowe, niż dotychczas sądzono.
      Byliśmy zaskoczeni tym, że podczas spontanicznego poruszania się, ruchy niemowląt „błądziły”, a dzieci wchodziły w różne interakcje sensomotoryczne. Nazwaliśmy to nawet „sensomotorycznym błądzeniem”. Obecnie przyjmuje się, że rozwój układu sensomotorycznego zależy od pojawiania się powtarzalnych interakcji, zatem im częściej wykonuje się dany ruch, tym lepiej jest on zapamiętywany. Jednak uzyskane przez nas wyniki wskazują, że niemowlęta rozwijają swój układ sensomotoryczny bazując na własnej ciekawości i eksploatacji świata, więc nie powtarzają po prostu tych samych działań, ale korzystają z szerokiego zestawu akcji. Ponadto nasze badania wskazują na istnienie związku pomiędzy wczesnymi spontanicznymi ruchami a spontaniczną aktywnością neuronów, mówi profesor Hoshinori Kanazawa.
      Badania wspierają hipotezę mówiącą, że noworodki i niemowlęta uczą się synchronizowania mięśni i impulsów nerwowych poprzez ruchy całego ciała, bez założonego z góry celu czy planu. W niedalekiej przyszłości Kanazawa chce zbadać, jak „błądzenie sensomotoryczne” wpływa na rozwój takich umiejętności jak chodzenie czy sięganie po przedmioty oraz na bardziej złożone zachowania i wyższe funkcje poznawcze. Chce dzięki temu poszerzyć wiedzę dotyczącą jego głównego obszaru zainteresowań, czyli rehabilitacji niemowląt.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Największe zwierzę, jakie kiedykolwiek żyło na Ziemi, pochłania olbrzymią liczbę najmniejszych kawałków plastiku, donoszą naukowcy z Uniwersytetu Stanforda. Płetwal błękitny i inne walenie wchłaniają więcej mikroplastiku, niż dotychczas sądzono. I niemal cały mikroplastik, jaki trafia do ich organizmów, pochodzi z ich pokarmu, a nie z wody, którą filtrują.
      Uczeni ze Stanforda opublikowali na łamach Nature Communications wyniki badań, w czasie których skupili się na płetwalach błękitnych, płetwalach zwyczajnych oraz humbakach i ilości mikroplastiku, który trafia do ich organizmów. Naukowcy stwierdzili, że zwierzęta żerujące u wybrzeży Kalifornii pożywiają się głównie na głębokościach od 50 do 250 metrów. To jednocześnie ten obszar wód oceanicznych, w którym występuje najwięcej mikroplastiku. Na podstawie badań uczeni oszacowali, że każdego dnia przeciętny płetwal błękitny pochłania około 10 milionów kawałków mikroplastiku.
      Płetwale błękitne znajdują się niżej w łańcuchu pokarmowym, niż można by wnioskować z rozmiarów ich ciała. To oznacza, że są bliżej oceanicznego plastiku. Łączy je z nim jedno kryl. Kryl pochłania plastik, płetwale zjadają kryl, mówi współautor badań Matthew Savoca.
      Humbaki żywią się głównie rybami i pochłaniają codziennie około 200 000 kawałków mikroplastiku, chociaż te osobniki, które jedzą głównie kryl, spożywają dziennie do 1 miliona fragmentów. Z kolei płetwale zwyczajne, których dietę stanowi i kryl i ryby, mogą codziennie wchłaniać od 3 do 10 milionów kawałków mikroplastiku. Savoca zauważa, że w jeszcze gorszej sytuacji są te zwierzęta, które żerują w bardziej zanieczyszczonych wodach, jak np. Morze Śródziemne.
      Co więcej, mikroplastik trafia do organizmów waleni głównie z pożywieniem, a nie z filtrowaną przez nie wodą. A to dodatkowy powód do zmartwień. Specjaliści obawiają się, że przez mikroplastik walenie mogą nie otrzymywać odpowiedniej ilości składników spożywczych. Musimy przeprowadzić dodatkowe badania, by dowiedzieć się, czy kryl, który wchłonął mikroplastik, nie ma przypadkiem mniej tłuszczu, podobnie zresztą nie wiemy, czy mikroplastik zjadany przez ryby nie powoduje, że są one mniej pożywne. Pochłaniając mikroplastik zwierzęta te mogą bowiem otrzymywać sygnał, że już się najadły, stwierdza główna autorka badań, Shirel Kahane-Rapport. Jeśli ryby i kryl są mniej tłuste, oznacza to, że każde polowanie – które związane jest z dużym wydatkiem energetycznym – przynosi waleniom mniej kalorii, co może być dla nich szkodliwe. Jeśli obszar, w którym polują, jest pełen żywności, ale jest to żywność uboga w składniki odżywcze, to polowanie jest marnowaniem energii, zjadają śmieci. To tak, jakby trenować do maratonu, odżywiając się w tym czasie żelkami, dodaje Kahane-Rapport.
      Goldbogen Lab, w którym prowadzono badania, od ponad dekady zbiera i analizuje dane dotyczące waleni. Naukowcy badają jak wiele walenie jedzą, w jaki sposób się odżywiają, dlaczego są tak duże, jak pracują ich serca. Teraz zakres badań rozszerzono o mikroplastik, który jest coraz poważniejszym problemem w morzach i oceanach. Mamy tutaj zwierzęta, których populacja z olbrzymim trudem odradza się po okresie polowań, a które muszą mierzyć się z wieloma innymi problemami wywoływanymi przez człowieka, piszą autorzy badań.
      Problem plastiku w morskim łańcuchu pokarmowym znany jest od 50 lat. Dotychczas mikroplastik został znaleziony w organizmach co najmniej 1000 morskich gatunków. Jego wpływ na walenie jest szczególnie niepokojący, gdyż zwierzęta ta pochłaniają jego olbrzymie ilości.
      Uczeni będą chcieli zbadać, co dzieje się z mikroplastikiem trafiającym do organizmów waleni. Może on podrażniać żołądek. Może trafiać do krwioobiegu. A może jest w całości wydalany. Tego wciąż nie wiemy, przyznaje Kahane-Rapport. Naukowcy zbadają też, jak mikroplastik wpływa na wartość odżywczą gatunków kluczowych nie tylko dla waleni, ale i innych zwierząt ważnych z ekologicznego punktu widzenia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Super-ziemia TOI-1452 b może być w całości pokryta oceanem, uważa międzynarodowy zespół astronomów. Na łamach The Astronomical Journal uczeni poinformowali o odkryciu planety krążącej wokół czerwonego karła TOI-1452 znajdującego się w układzie podwójnym w Gwiazdozbiorze Smoka. Układ ten jest odległy od Ziemi o 99,5 lat świetlnych.
      TOI-1452 b jest nieco większa i bardziej masywna od naszej planety. Obiega swoją gwiazdę w ciągu 11 dni. Mimo że jej gwiazda jest mniejsza i chłodniejsza od Słońca, to planeta otrzymuje mniej więcej dwukrotnie więcej promieniowania niż Ziemia. Jest go tyle, że odpowiada ono temperaturze 52,85 stopni Celsjusza na powierzchni planety.
      Woda stanowi mniej niż 1% masy Ziemi. Gęstość niektórych egzoplanet wskazuje, że w większym stopniu zbudowane są z lżejszych materiałów niż nasza planeta. Najprawdopodobniej znaczy to, że zawierają więcej wody.
      TOI-1452 to jedna z najlepszych znanych nam kandydatek na wodny świat. Jej średnica i masa wskazują, że ma ona znacznie mniejszą gęstość niż planeta zbudowana ze skał i metali, jak Ziemia, stwierdził główny autor badań, Charles Cadieux. Analizy wykazały, że planeta może aż w 30% składać się z wody.
      TOI-1452 b z pewnością będzie badana za pomocą Teleskopu Webba. Znajduje się bowiem stosunkowo blisko Ziemi, co ułatwia badanie jej atmosfery, ponadto jest w takim miejscu nieboskłonu, który jest widoczny dla Webba przez większą część roku. Jak tylko zarezerwujemy sobie czas obserwacyjny na JWST rozpoczniemy pracę nad lepszym zrozumieniem tej planety, dodaje profesor René Doyon z Uniwersytetu w Montrealu.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...