Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

„Makaron” gwiazd neutronowych najtwardszym materiałem wszechświata?

Recommended Posts

36 minut temu, tempik napisał:

Jeśli nie ma determinizmu na poziomie molekuł to ludziom chcącym robić zarzuty muzgu i świadomości do jakiejś elektroniki, teleportować się z prędkością światła, zejście w nanotechnologii do pojedynczych molekuł, trzeba powiedzieć:

Tzn. chcesz dowodzić że jest determinizm na poziomie cząstek? :D

To chyba odpowiada na resztę Twojego pytania. Ale nie do końca. Jeśli piszesz o teleportacji to ona właśnie dzięki temu że nie ma determinizmu działa.

Jak wprowadzisz determinizm  - to teleportacja znika.

Cytat

ludziom chcącym robić zarzuty muzgu i świadomości do jakiejś elektroniki

A to nie za wiele ma wspólnego z tym czy jest czy nie jest. Niektórzy dowodzą że świadomość powstaje na poziomie kwantowym, ale to nie jest dowiedzione mimo iż pewne procesy dot. świadomości zachodzą dzięki zjawiskom kwantowym.

Cytat

zejście w nanotechnologii do pojedynczych molekuł

Schodzimy ale nie dzięki determinizmowi tylko dzięki jego brakowi :D Gdyby determinizm działał - pewnie by nas ten poziom mało interesował.

Edited by thikim

Share this post


Link to post
Share on other sites
13 godzin temu, thikim napisał:

Jeśli piszesz o teleportacji to ona właśnie dzięki temu że nie ma determinizmu działa

chodziło mi o możliwość zeskanowania stanów cząsteczek np. całego mózgu, przesłanie to emailem dużo lat świetlnych dalej i odtworzenie tego po drugiej stronie. Ale obserwacja zmienia stan obserwowanej cząsteczki, a obliczyć jej nie można jeśli nie ma determinizmu

13 godzin temu, thikim napisał:

Niektórzy dowodzą że świadomość powstaje na poziomie kwantowym

patrz wyżej

 

 

Share this post


Link to post
Share on other sites

Ja pisałem o kwantowej. Ale rozpatrzmy Twoją wersje teleportacji.

4 godziny temu, tempik napisał:

Ale obserwacja zmienia stan obserwowanej cząsteczki, a obliczyć jej nie można jeśli nie ma determinizmu

Ale brakuje pewnego założenia. Że ten stan jest istotny. Nie ma na to dowodu.

Jeśli ten stan który nam sprawia problem przy teleportacji jest nieistotny to nie musimy go teleportować. Ba, mamy dużo mniej informacji do przesłania.

Share this post


Link to post
Share on other sites
Godzinę temu, thikim napisał:

Ale brakuje pewnego założenia. Że ten stan jest istotny. Nie ma na to dowodu

Jak nie jak tak :)

w kodzie programu, w języku maszynowym ważny jest każdy bit. W newralgicznych miejscach wystarczy jedna zmiana z 0 na jeden i cały program liczący miliony linii wywala się.

w mózgu wydaje mi się że jest podobnie. Mimo że architektura neuronowa jest nieporównywalnie odporniejsza na uszkodzenia od jakiegoś tam x86,to i tak są strategiczne węzły w których minimalna zmiana rozwali cały algorytm.

poza tym nastąpi zmiana o 1 bit w twojej preferencji koloru w RGB i twoja kopia na drugim końcu świata będzie chciała malować ściany na sraczkowato mimo że ty byś wolał zieleń trawy, to już nie do końca byś był  Ty :D

 

Share this post


Link to post
Share on other sites
20 minut temu, tempik napisał:

w kodzie programu, w języku maszynowym ważny jest każdy bit

Ale przecież nie chodzi Ci o teleportowanie kodu tylko o teleportowanie stanów kwantowych - dlaczego tych nie teleportujesz przesyłając program?
Bo są właśnie nieistotne.
Dlaczego żeby teleportować program nie chcesz teleportować komputera z każdym z jego tranzystorów i każdym elektronem - tylko zadowalasz się bitami?
Mógłbyś przecież zamiast przesłać kod z jednej pamięci na drugą - teleportować każdy atom pamięci i każdy stan kwantowy każdej cząstki. Nie robi tego nikt a programy działają :D

A mózg ludzki też ma programy. I też nie wymaga teleportowania wszystkiego.

Napiszę najprościej jak się da:
Załóżmy że chcesz teleportować szklankę z mlekiem.
Możesz to zrobić na dwa sposoby: teoretycznie:

Opisać każdy stan kwantowy każdej cząstki i dostaniesz rzeczywiście mleko.

A możesz napisać 200 ml mleka o temperaturze ok. 20.

I dostaniesz to samo :D Co za różnica jaki jest dokładnie pęd każdej cząstki w mleku?
Wystarczy że średnio da to temperaturę 20 st. C.

Edited by thikim

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Od kiedy na całym świecie, w związku z epidemią COVID-19, gwałtownie wzrosło zapotrzebowanie na maseczki, pojawiły się problemy z zapewnieniem tego środka ochronnego pracownikom służby zdrowia. Stąd też apele, o noszenie własnoręcznie wykonanych maseczek. Amerykańskie Towarzystwo Chemiczne informuje na łamach swojego pisma ACS Nano, że maseczkę najlepiej wykonać z połączenia bawełny i  syntetycznego szyfonu. Najlepiej odfiltruje ona aerozole.
      Najdrobniejsze z wydychanych przez nas cząstek z łatwością prześlizgują się przez różne tkaniny. Stąd też rodzi się pytanie, z jakich materiałów powinna być wykonana maseczka domowej roboty. Postanowił na nie odpowiedzieć Supratik Guha i jego koledzy z University of Chicago.
      Naukowcy wykorzystali specjalną komorę do mieszania aerozoli, w której wytwarzali cząstki wielkości od 10 nm do 6 mn. Wentylator kierował aerozole w stronę tkaniny, a zespół sprawdzał, liczbę i rozmiary cząstek aerozoli, które przedostały się przez tkaniny. Okazało się, że najlepszym rozwiązaniem jest połączenie jednej warstwy gęstej bawełny z dwiema warstwami szyfonu. W badaniu użyto szyfonu składającego się w 90% z poliestru i 10% z lycry. Taka maseczka zatrzymuje – w zależności od wielkości cząstek – od 80 do 99 procent aerozolu.
      Szyfon można zastąpić naturalnym jedwabiem lub flanelą i całość sprawdzi się niemal równie dobrze.
      Naukowcy wyjaśniają, że gęsto utkany materiał, jak bawełna, działa jak bariera mechaniczna. Z kolei szyfon czy naturalny jedwab, które przechowują statyczne ładunki elektryczne, działają jak bariera elektrostatyczna.
      Najważniejsze jest jednak dokładne zakładanie maseczki. Jej niewłaściwe założenie, gdy powietrze będzie uciekało bokiem, zmniejsza skuteczność maseczki nawet o 60%.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z amerykańskiego Laboratorium Wirusologii Narodowego Instytutu Alergii i Chorób Zakaźnych, Uniwersytetu Kalifornijskiego w Los Angeles, Uniwersytetu Princeton, Centrów Zapobiegania i Kontroli Chorób (CDC) oraz Narodowych Instytutów Zdrowia, określili czas przetrwania koronawirusa SARS-CoV-2 na różnych powierzchniach i w aerozolach. Z ich badań wynika, że jest on podobny, co czas przetrwania SARS-CoV-1, który wywołał epidemię SARS przed kilkunastu laty.
      Ogólnie rzecz biorąc, stabilność SARS-CoV-2 i SARS-CoV-1 jest bardzo podobna. Stwierdziliśmy, że aktywny wirus może być obecny w aerozolach do 3 godzin po aerozolizacji, do 4 godzin na miedzi, do 24 godzin na kartonie i do 2-3 dni na plastiku i stali nierdzewnej. Oba wirusy wykazywały podobny okres półtrwania w aerozolach, gdzie mediana wynosiła około 2,7 godziny. Oba wykazują dość długi czas przetrwania na stali nierdzewnej i polipropylenie w porównaniu z miedzią i kartonem. Mediana okresu półtrwania SARS-CoV-2 wynosi 13 godzin na stali i 16 godzin na polipropylenie. Wyniki naszych badań wskazują, że droga transmisji przez aerozole i powierzchnie jest możliwa, gdyż wirus pozostaje aktywny w aerozolach przez wiele godzin, a na powierzchniach przez wiele dni – czytamy w artykule Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1 [PDF]
      Naukowcy zauważają, że stabilność wirusa w aerozolach i na powierzchniach ma bezpośredni wpływ na ryzyko zarażenia. Obie te drogi zarażenia odegrały główną rolę podczas dwóch poprzednich epidemii koronawirusów, SARS i MERS, z tym, że w przypadku SARS prawdopodobnie główną drogą zarażenia były aerozole.
      Przeprowadzone właśnie szczegółowe analizy aktywności najnowszego koronawirusa wykazały, że w ciągu trzech godzin po aerozolizacji liczba zdolnych do zarażania wirusów spada z 103,5 do 102,7. Najnowszy koronawirus jest zaś najbardziej stabilny na polipropylenie, gdzie po 72 godzinach liczba aktywnych wirusów spadła z 103,7 do 100,6, oraz na stali nierdzewnej, gdzie do takiego samego spadku dochodzi w ciągu 48 godzin. Z kolei po nałożeniu wirusa na powierzchnię miedzianą obecności aktywnych wirusów nie wykrywano po 4 godzinach, a po nałożeniu na karton wirusów nie stwierdzono tam po 24 godzinach.
      Uczeni stwierdzili, że nie ma statystycznie istotnej różnicy pomiędzy okresem przetrwania SARS-CoV-2 i SARS-CoV-1 na różnych powierzchniach i w aerozolach. Skoro tak, to do wyjaśnienia pozostaje zagadka, dlaczego obecny koronawirus (SARS-CoV-2) wywołał epidemię na znacznie większą skalę. Wiele różnych czynników może wchodzić tutaj w grę. Prawdopodobnie najnowszym koronawirusem możemy zarazić się od osób niewykazujących objawów, co ogranicza skuteczność kwarantanny. Mogą istnieć też różnice w ilości wirusów potrzebnych do wywołania zakażenia. Inne możliwe czynniki to stabilność wirusa w śluzie i jego odporność na takie czynniki jak temperatura i wilgotność.
      Autorzy obecnych badań właśnie zaczynają eksperymenty, które pozwolą określić, jak SARS-CoV-2 radzi sobie w różnych warunkach atmosferycznych i różnych środowiskach, takich jak w wydzielinie z nosa, ślinie czy kale.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Chińscy archeolodzy potwierdzili, że znaleziony w urnie z czasów neolitycznej kultury Yangshao zwęglony materiał to pozostałości jednej z najstarszych na świecie jedwabnych tkanin. Urnę odkryto na stanowisku Wanggou w prowincji Henan.
      Z pomocą testu ELISA opracowanego przez ekspertów z Chińskiego Narodowego Muzeum Jedwabiu potwierdzono, że zwęglona tkanina z urny to jedwab - powiedział na konferencji prasowej kurator Zhao Feng.
      Gu Wanfa, dyrektor Instytutu Badania Zabytków i Archeologii w Zhengzhou, ujawnił, że w Henanie odkryto klaster ruin z okresu kultury Yangshao sprzed 5-7 tys. lat.
      Tkanina z Wanggou ma 5300-5500 lat. Inne stare potwierdzone przypadki tkaniny jedwabnej pochodzą z czasów kultury Lianghzu i mają 4200-4400 lat - opowiada Gu.
      W książce A History of Chinese Science and Technology (t. II) Wydawnictwa Prasowego Uniwersytetu Jiao Tong w Szanghaju napisano, że w 1958 r. specjaliści zaangażowani w badania archeologiczne prowincji Zhejiang odkryli na stanowisku Qianshanyang (kultura Liangzhu) w Huzhou bambusowy koszyk, w którym znajdowały się m.in. tekstylia. Naukowcy z Instytutu Tekstyliów oraz Uniwersytetu Technologicznego Zhejiangu zidentyfikowali je jako materiał jedwabny, a także jedwabne włókna i wstążki. Później zespół z Instytutu Archeologicznego prowincji odkrył na stanowisku jedwabne wstążki sprzed ok. 4 tys. lat.
      W publikacji mówi się również o innym przypadku - skrawkach jedwabiu i tkanin z materiałów roślinnych sprzed ok. 5500 lat; odkopano je w latach 80. XX w. na neolitycznym stanowisku w Qingtai Village.
      Na stanowisku Wanggou resztki jedwabiu znaleziono w czaszce dziecka. Wanfa uważa, że odkrycie sugeruje, w owym czasie chińska technologia produkcji jedwabiu już raczej dojrzewała, niż dopiero się zaczynała.
      Ponieważ kształt urny nawiązuje do wyglądu kokonu jedwabników, Zhao Feng przypuszcza, że chowając w ten sposób swoich zmarłych, kiedyś ludzie chcieli, by powstali oni z martwych, tak jak dorosły motyl wydostaje się z kokonu.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzięki „szczęśliwemu wypadkowi” naukowcy z University of Massachusetts w Lowell otrzymali nową stabilną formę węgla. Wydaje się mieć ona wyjątkowe właściwości: jest twardsza od stali, równie dobrze przewodzi prąd, a jej powierzchnia jest połyskliwa jak polerowanego aluminium. Najbardziej zaś zaskakujący jest fakt, iż nowa forma wydaje się ferromagnetykiem i utrzymuje tę właściwość w temperaturach dochodzących do 125 stopni Celsjusza. O odkryciu poinformował fizyk Joel Therrien podczas International Symposium on Clusters and Nanomaterials.
      Słuchający jego wystąpienia specjaliści byli podekscytowani, ale i ostrożnie podeszli do tych rewelacji. Qian Wang, fizyk z Uniwersytetu Pekińskiego, stwierdziła: gdy opublikują wyniki swoich badań i zostaną one potwierdzone przez innych, spotka się to z olbrzymim zainteresowaniem. Jeśli materiał ten wykazuje właściwości magnetyczne, to może być bardzo użyteczny przy budowie bioczujników czy nośników leków. Uczona zwraca uwagę, że węgiel jest lżejszy niż inne ferromagnetyki, a ponadto nie jest toksyczny.
      Robert Whetten, materiałoznawca z Northern Arizona University, stwierdził, że on dał się przekonać Therrienowi. Przypomina, że gdy w połowie lat 80. ogłaszano odkrycie kulistego fullerenu C60, to spotkało się to z równie dużym sceptycyzmem. Przypomina jednak, że już wcześniej pojawiły się twierdzenia o odkryciu magnetyzmu w czystym węglu, a później okazywało się, iż próbki były zanieczyszczone.
      Na razie naukowcom udało się uzyskać jedynie cienkie warstwy nowego materiału, które badali za pomocą mikroskopów elektronowych i spektrometrów rentgenowskich. Wszyscy zwracają uwagę, że potrzebne są kolejne badania.
      Sumio Iijima, ekspert od nanomateriałów z Meijo University, który w 1991 roku odkrył węglowe nanorurki mówi, że zaprezentowane dane „nie są wystarczająco dobre”, by przekonać go, iż Amerykanie odkryli nowy alotrop węgla. Chce, by na większej próbce przeprowadzono badania metodą krystalografii rentgenowskiej. Dopiero to pozwoli na określenie struktury materiału.
      Therrien mówi, że nowy materiał uzyskano podczas nieudanych próby syntezy pentagrafenu. To teoretycznie przewidywana forma węgla, w której atomy są połączone w kształt pierścieni składających się z pięciu elementów. Dotychczas nikt jej nie uzyskał. Uczony chciał wykorzystać technikę pozwalającą na wymuszenie nietypowej struktury atomowej. Do komory służącej do chemicznego osadzania z fazy gazowej włożył folię miedzianą spełniającą formę katalizatora i podgrzał ją do temperatury około 800 stopni Celsjusza. Zamiast jednak wpompować do środka prosty gaz, jak metan, użył bardziej złożonego 2,2 dimetylbutanu.
      Po skończeniu zajęć ze studentami Therrien wrócił do laboratorium i poczuł zapach smoły. Wnętrze komory było pokryte czarnym osadem, jednak na miedzianej folii pojawiła się jasna, błyszcząca warstwa.
      Po dwóch latach eksperymentów z różnymi heksanami jego zespół nauczył się odtwarzać uzyskaną substancję na podłożach o grubości do 1 mikrometra i długości kilku centymetrów. Naukowcy twierdzą, że otrzymują w ten sposób pofałdowane warstwy węgla złożone pierścieni, na których składa się 6 lub 12 atomów połączonych wiązaniami kowalencyjnymi.
      Podczas wspomnianego sympozjum pokazano film, na którym widać, że zawieszone w kroplach wody kawałki nowego materiału reagują na magnes, a najbardziej sensacyjnym jest stwierdzenie, iż właściwości magnetyczne występują w temperaturze d0 125 stopni, czyli w takim zakresie, w jakim pracują silniki czy komputery. Therrien mówi, że próbowano zarysować nowy materiał za pomocą stali i się nie udało. Zarysowuje go diament. Inną niezwykłą właściwością jest wysoki połysk. Dotychczasowe pomiary wykazały, że materiał odbija ponad 90% światła w zakresach od dalekiego ultrafioletu po połowę podczerwieni.
      Nowy materiał przewodzi ładunki elektryczne niemal równie dobrze jak stal, a po poddaniu go powolnemu wyżarzaniu do temperatury 1000 stopni Celsjusza, pojawia się w nim pasmo zabronione, staje się więc półprzewodnikiem.
      Naukowcy nie nadali mu jeszcze nazwy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Grupa naukowców skupiona w Centre for Natural Material Innovation działającym na Wydziale Architektury Uniwersytetu w Cambridge twierdzi, że w ciągu 10 lat powstanie pierwszy drapacz chmur z... drewna. Architekci, biochemicy, chemicy, matematycy i inżynierowie uważają, że już wkrótce będziemy świadkami pierwszego wielkiego przełomu w strukturze budowli od czasu wynalezienia przed 150 laty wzmocnionego betonu i stali konstrukcyjnej.
      Do czasu pojawienia się CLT (drewno klejone warstwowo i krzyżowo) nie istniał materiał konstrukcyjny porównywalny ze stalą i wzmacnianym betonem. Jeśli chcieliśmy budować miasta i drapacze chmur, musieliśmy decydować się na te materiały z ich dobrymi i złymi stronami. Beton jest pięciokrotnie cięższy od drewna, co oznacza konieczność budowy bardziej masywnych fundamentów oraz podnosi koszty transportu. Produkcja betonu jest jednym z największych źródeł zanieczyszczenia atmosfery dwutlenkiem węgla i zużywa olbrzymie ilości zasobów. Beton jest – zaraz po wodzie – najczęściej używanym materiałem. Tearz mamy alternatywę i jest ona oparta na roślinach, mówi główny autor badań, doktor Michael Ramage.
      Wiele grup naukowych pracuje nad rozwiązaniami pozwalającymi zastąpić beton drewnem. Uczeni z Cambridge wierzą, że będą pierwszymi, którzy stworzą drewniany drapacz chmur.
      W samej tylko Anglii przez następnych 12 lat musi powstawać 340 000 nowych domów i mieszkań. Beton to materiał nieodnawialny. Ale drewno to jedyny materiał budowlany, który możemy hodować i którego wykorzystanie pozwala na pochłanianie dwutlenku węgla. Każda tona drewna wycofuje z atmosfery 1,8 tony dwutlenku węgla. Gdy sobie to przeliczymy, to możemy stwierdzić, że jeśli wszystkie nowe domy w Anglii byłyby budowane z drewna, to przechwycilibyśmy tyle CO2 ile jest wytwarzane przez 850 000 osób w ciągu 10 lat, stwierdza uczony.
      Oczywiście zastosowanie drewna jako głównego materiału konstrukcyjnego wymagałoby odpowiedniej gospodarki leśnej. Jednak, jak przekonuje Ramage, jest to do osiągnięcia. Już teraz uprawiane w sposób zrównoważony europejskie lasy wytwarzają tyle drewna, że w ciągu 7 sekund powstaje materiał potrzebny do wybudowania mieszkania z 3 sypialniami, a w ciągu 4 godzin rośnie ilość drewna wystarczająca do zbudowania 300-metrowego drapacza chmur. Lasy Kanady mogą zapewnić materiał do zbudowania domów dla miliarda ludzi, a przyrost materiału jest szybszy niż wycinka pod budowę domów, stwierdza naukowiec.
      Warto też przypomnieć, że w Kanadzie wybudowano już 18-piętrowy budynek skonstruowany w większości z drewna, a naukowcy uzyskali drewno mocniejsze od stali.


      « powrót do artykułu
×
×
  • Create New...