Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Już kilka cząstek działa tak, jak miliardy

Rekomendowane odpowiedzi

Mniejsze systemy mogą symulować większe, gdyż mają takie same właściwości. Większość substancji badanych przez fizyków występuje w tak wielkiej liczbie cząstek, że nie ma różnicy, czy badają oni kroplę wody czy cały basen wypełniony wodą. Nawet bowiem kropla wody zawiera ponad kwadrylion cząstek. Możliwość badania małych systemów składających się z olbrzymiej liczby cząstek pozwala na lepsze rozumienie kolektywnego zachowania się cząstek i przekładania ich zachowania na większe systemy. Na przykład zarówno kropla wody jak i woda w basenie zamarzają przy 0 stopni Celsjusza i gotują się przy 100 stopniach.

Naukowcy od dawna zajmują się przejściami fazowymi w substancjach składających się z olbrzymiej liczby cząstek. Naukowcy z Imperial College London, Uniwersytetu w Oxfordzie i Instytut Technologicznego z Karlsruhe postanowili dowiedzieć się, jaki jest najmniejszy system, w do którego stosują się takie same przejścia fazowe, co do systemów składających się z olbrzymiej liczby cząstek. Stworzyli więc systemy składające się z mniej niż 10 fotonów i zaczęli je badać. Właśnie poinformowali, na łamach Nature Physics, że przejście fazowe wciąż zachodzi już w systemie złożonym średnio z 7 cząstek.

Eksperyment nie jest podyktowany jedynie ciekawością, ale ma też praktyczne zastosowanie. Badanie właściwości kwantowych cząstek jest tym łatwiejsze, im mniej cząstek badamy. Dzięki niemiecko-brytyjskiemu zespołowi naukowcy będą teraz wiedzieli, że wystarczy stworzyć system z mniej niż 10 cząstek, by móc go badać, a uzyskane wyniki przekładać na większe systemy.

Teraz, gdy potwierdziliśmy, że koncepcja przejścia fazowego jest wciąż użyteczna w tak małych systemach, możemy prowadzić badania, których nie da się wykonać w większych systemach. Możemy badać przede wszystkim kwantowe właściwości światła i materii, odpowiadać na pytania, co dzieje się w najmniejszej skali, w której możliwe są przejścia fazowe, mówi główny autor badań, doktor Robert Nyman z Wydziału Fizyki Imperial College London.

Zespół Nymana zajmował się badaniem kondensatu Bosego-Einsteina. To stan materii różny od właściwości ciał stałych, cieczy, gazów i plazmy. Okazało się, że do przemiany fazowej kondensatu dochodzi, gdy w systemie znajduje się około 7 cząstek.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Komputery kwantowe mogą bazować na różnych rodzajach kubitów (bitów kwantowych). Jednym z nich są kubity z fotonów, które o palmę pierwszeństwa konkurują z innymi rozwiązaniami. Mają one sporo zalet, na przykład nie muszą być schładzane do temperatur kriogenicznych i są mniej podatne na zakłócenia zewnętrzne niż np. kubity bazujące na nadprzewodnictwie i uwięzionych jonach. Pary splątanych fotonów mogą stanowić podstawę informatyki kwantowej. Jednak uzyskanie splatanych fotonów wymaga zastosowania nieporęcznych laserów i długotrwałych procedur ich dostrajania. Niemiecko-holenderska grupa ekspertów poinformowała właśnie o stworzeniu pierwszego w historii źródła splątanych fotonów na chipie.
      Dokonany przez nas przełom pozwolił na zmniejszenie źródła ponad 1000-krotnie, dzięki czemu uzyskaliśmy powtarzalność, długoterminową stabilność, skalowalność oraz potencjalną możliwość masowej produkcji. To warunki, które muszą być spełnione, by zastosować tego typu rozwiązanie w realnym świecie kwantowych procesorów, mówi profesor Michael Kues, dyrektor Instytutu Fotoniki na Leibniz Universität Hannover. Dotychczas źródła światła dla komputerów kwantowych wymagały zastosowania zewnętrznych, nieporęcznych systemów laserowych, których użyteczność była ograniczona. Poradziliśmy sobie z tymi problemami tworząc nową architekturę i różne systemy integracji podzespołów na układzie scalonym, dodaje doktorant Hatam Mahmudlu z grupy Kuesa.
      Naukowcy mówią, że ich układ scalony jest równie łatwy w użyciu, jak każdy innych chip. Żeby rozpocząć generowanie splątanych fotonów wystarczy układ zamontować i włączyć. Jak każdy inny układ scalony. Jego obsługa nie wymaga żadnego specjalnego doświadczenia. Zdaniem twórców układu, w przyszłości takie źródło może znaleźć się w każdym kwantowym procesorze optycznym.
      Dotychczas eksperci mieli olbrzymie problemy w zintegrowaniu na jednym chipie laserów, filtra i wnęki, gdyż nie istnieje żaden pojedynczy materiał, z którego można by stworzyć wszystkie te urządzenia. Rozwiązaniem okazało się podejście hybrydowe. Naukowcy na jednym chipie umieścili laser z fosforku indu, wnękę oraz filtr z azotku krzemu. W polu lasera, w wyniku spontanicznego nieliniowego procesu, dochodzi do powstania dwóch splątanych fotonów. Uzyskaliśmy wydajność i jakość wymaganą do zastosowania naszego chipa w kwantowych komputerach czy kwantowym internecie, zapewnia Kues. Nasze źródło światła wkrótce stanie się podstawowym elementem programowalnych fotonicznych procesorów kwantowych, uważa uczony. Szczegóły badań zostały opublikowane w Nature Photonics.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fizycy znaleźli nowy sposób na wejrzenie w głąb jądra atomu. Okazuje się, że można tego dokonać śledząc interakcje pomiędzy światłem a gluonami, bezmasowymi cząstkami, które pośredniczą w oddziaływaniach silnych. Nowo opracowana metoda wykorzystuje nowo odkryty rodzaj kwantowej interferencji pomiędzy różnymi cząstkami.
      Protony i neutrony, z których składa się jądro atomowe, są zbudowane z kwarków. Jednak same kwarki byłyby niestabilne, potrzebują gluonów, nośnika oddziaływań silnych, które na podobieństwo kleju utrzymują je razem. Gluony są zbyt małe, byśmy mogli je dostrzec, ale wchodzą w interakcje z fotonami, w wyniku czego powstają krótko żyjące mezony ρ (rho), które rozpadają się do pionów.
      Uczeni z Brookhaven National Laboratory użyli akceleratora Relativistic Heavy Ion Collider (RHIC), w którym przyspieszane są jądra atomów złota i uranu. Podróżujące jądra były otoczone chmurą spolaryzowanych fotonów. Minęły się one z olbrzymią prędkością w odległości równej kilku średnicom jądra. Dzięki tak małej odległości chmury fotonów otaczające każde z jąder weszły w interakcje z gluonami drugiego jądra. Śledząc prędkości i kąty cząstek pochodzących z tych interakcji można bardzo precyzyjnie określić polaryzację fotonów, a to z kolei pozwala na stworzenie mapy dystrybucji gluonów zarówno w kierunku polaryzacji oraz prostopadle do niego. Taka technika daje nam możliwość znacznie bardziej precyzyjnych pomiarów rozkładu gluonów.
      Naukowcy badali w akceleratorze kąty i prędkości pionów o ładunku dodatnim i ujemnym pochodzących ze wspomnianych interakcji. W ten sposób mogli stworzyć szczegółową mapę rozkładu gluonów w jądrach atomów złota i uranu. Technika obserwacji jest podobna do pozytonowej tomografii emisyjnej, ale działa w skali femtometrów (10-15 m). Pozwoli ona lepiej zrozumieć, w jaki sposób gluony biorą udział w tworzeniu jądra atomowego.
      Wcześniejsze badania pozwalały jedynie określić, jak daleko od centrum jądra znajduje się każdy z gluonów, gdyż brakowało wówczas precyzyjnych informacji o polaryzacji. Skutkiem tego były błędy interpretacyjne, w wyniku których tak badane jądra wydawały się większe niż wykazywały to inne eksperymenty oraz modele teoretyczne. Naukowcy rozwiązali więc zagadkę trapiącą fizyków od 20 lat. Teraz wiemy, że podczas poprzednich, mniej precyzyjnych pomiarów, mylono pęd i energię fotonu z gluonami. Uzyskane przez nas obrazy są tak precyzyjne, że możemy nawet zauważyć, gdzie w dużym jądrze znajdują się protony, a gdzie neutrony, cieszą się autorzy badań.
      Ponadto wzorce interferencji pomiędzy funkcjami falowymi obserwowanych pionów wykazały, że – mimo iż miały przeciwne ładunki – były one splątane. To pierwsza eksperymentalna obserwacja interferencji między niepodobnymi cząstkami. Niewykluczone, że uda się dzięki temu opracować nowe sposoby uzyskiwania stanów splątanych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Współpraca naukowców z Wydziału Fizyki Uniwersytetu Warszawskiego i PAN zaowocowała powstaniem pulsującego neuronu stworzonego z fotonów. To podstawowy element fotonicznego procesora sieci neuronowych. Tego typu chipy, zwane układami neuromorficznymi, mają być w przyszłości podstawą systemów sztucznej inteligencji.
      Systemy fotoniczne zapewniają dużą prędkość przesyłania informacji przy jednoczesnym niewielkim zużyciu energii. Ich wadą jest zaś słabe oddziaływanie pomiędzy sobą, przez co trudno je wykorzystać do wykonywania operacji obliczeniowych. Dlatego też polscy wykorzystali ekscytony, cząstki o bardzo małej masie, z którymi fotony silnie oddziałują. Gdy fotony i ekscytony zostaną razem umieszczone we wnęce optycznej, powstaje między nimi trwały układ cyklicznej wymiany energii, który jest kwazicząstką – polarytonem.
      Polarytony mogą zaś, w odpowiednich warunkach, tworzyć kondensat Bosego-Einsteina. W tym stanie skupienia zaczynają tworzyć „superatom”, zachowujący się jak pojedyncza cząstka. Opierając się na naszym ostatnim eksperymencie, jako pierwsi zauważyliśmy, że kiedy polarytony są wzbudzane za pomocą impulsów laserowych, emitują impulsy światła przypominające pulsowanie neuronów biologicznych. Efekt ten jest bezpośrednio związany ze zjawiskiem kondensacji Bosego-Einsteina, które albo hamuje, albo wzmacnia emisję impulsów, wyjaśnia doktorantka Magdalena Furman z Wydziału Fizyki UW.
      Autorami modelu teoretycznego, który pozwala połączyć badania nad polarytonami z modelem neuronu są doktor Andrzej Opala i profesor Michał Matuszewski. Proponujemy wykorzystać nowy paradygmat obliczeniowy oparty na kodowaniu informacji za pomocą impulsów, które wyzwalają sygnał tylko wtedy, gdy przybędą do neuronu w odpowiednim czasie po sobie, mówi doktor Opala. Innymi słowy, taki sposób pracy takiego sztucznego neurony ma przypominać pracę neuronów biologicznych, pobudzanych impulsami elektrycznymi. W neuronie biologicznym dopiero powyżej pewnego progu impulsów docierających do neuronu, sygnał przekazywany jest dalej. Polarytony mogą naśladować neuron biologiczny, gdyż dopiero po pobudzeniu pewną liczbą fotonów powstaje kondensat Bosego-Einsteinai dochodzi do emisji sygnału do kolejnego neuronu.
      Mimo niewątpliwie interesujących badań, na wdrożenie pomysłu polskich uczonych przyjdzie nam jeszcze poczekać. Kondensat Bosego-Einsteina uzyskiwali oni w temperaturę zaledwie 4 kelwinów, którą można osiągnąć w ciekłym helu. Naszym kolejnym celem jest przeniesienie eksperymentu z warunków kriogenicznych do temperatury pokojowej. Potrzebne są badania nad nowymi materiałami, które pozwolą na uzyskanie kondensatów Bosego-Einsteina także w wysokich temperaturach. W Laboratorium Polarytonowym pracujemy nie tylko nad takimi substancjami, badamy też możliwość sterowania kierunkiem emitowanych fotonów, mówi profesor Jacek Szczytko z Wydziału Fizyki UW.
      W badaniach nad układami neuromorficznymi naukowcy wciąż napotykają na nowe wyzwania. Nasz nowy pomysł na odtworzenie pulsowania neuronów biologicznych w domenie optycznej, może posłużyć do stworzenia sieci, a potem układu neuromorficznego, w którym informacje przesyłane są o rzędy wielkości szybciej i w sposób bardziej efektywny energetycznie w porównaniu do dotychczasowych rozwiązań, dodaje doktor Krzysztof Tyszka.
      Szczegóły pracy zostały opisane na łamach Laser & Photonics Reviews.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Austrii i Włoch stworzyli „kwantowy memrystor”, urządzenie zdolne do przekazywania koherentnej informacji kwantowej w postaci superpozycji pojedynczych fotonów. Urządzenie takie może stać się podstawą do stworzenia kwantowej wersji architektury neuromorficznej, której działanie ma naśladować pracę ludzkiego mózgu.
      Memrystor, to czwarty podstawowy typ elementu elektronicznego. Od dawna znaliśmy opornik, kondensator i cewkę. W 1971 roku profesor Leon Chua z Kalifornii wysunął hipotezę, że może istnieć czwarty element, który nazwał opornikiem pamięci czyli memrystorem. Urządzenie takie powstało niemal 40 lat później, w 2008 roku. Memrystory szybko okazały się bardziej przydatne, niż sądzono, a przed dwoma laty wykorzystano je do zbudowania urządzenia działającego podobnie jak neuron.
      Badania  nad tym elementem elektronicznym ciągle trwają, a najnowszym osiągnięciem jest połączenie go z technologią kwantową.
      Memrystor współpracujący ze stanami kwantowymi i przekazujące kwantowe informacje został zbudowany przez uczonych z Uniwersytetu Wiedeńskiego, Politechniki Mediolańskiej i włoskiej Narodowej Rady Badawczej. Stworzono go za pomocą femtosekundowego lasera emitującego krótkie impulsy światła trwające zaledwie 10-15 sekundy. Za pomocą tych impulsów naukowcy rzeźbili w szkle falowody, kanały zdolne do więzienia lub przesyłania światła.
      Michele Spagnolo i jego zespół wykorzystali falowody do przesyłania pojedynczych fotonów. Dzięki ich kwantowej naturze znajdujące się w superpozycji fotony można było w tym samym czasie wysyłać przez dwa lub więcej falowodów. Za pomocą bardzo zaawansowanych wykrywaczy pojedynczych fotonów mogliśmy dokonywać pomiaru fotonu w jednym z falowodów, a następnie wykorzystać ten pomiar do kontrolowania urządzenia modulując transmisję w innym falowodzie. W ten sposób nasze urządzenie zachowywało się jak memrystor, wyjaśnia Michele Spagnolo. Oprócz uzyskania w ten sposób zachowania typowego dla memrystora, naukowcy – za pomocą symulacji – wykazali, że sieć optyczna zawierająca kwantowe memrystory będzie zdolna do nauki rozwiązywania problemów zarówno w sposób klasyczny, jak i kwantowy. To zaś wskazuje, że kwantowy memrystor może być tym elementem, który połączy sztuczną inteligencję i komputery kwantowe.
      Klasyczne memrystory są obecnie używane w badaniach nad komputerowymi platformami neuromorficznymi. Dlatego też włosko-austriacki zespół sądzi, że kwantowy memrystor może przyczynić się do powstania kwantowych sieci neuromorficznych.
      Uwolnienie pełnego potencjału możliwości sztucznej inteligencji zbudowanej na systemach kwantowych to jedno z najważniejszych obecnie wyzwań fizyki kwantowej i informatyki, dodaje Spagnolo. Uczony dodaje, że jego grupa już rozpoczęła prace nad odpowiednim urządzeniem. Jej pierwszym celem jest stworzenie urządzenia składającego się z kilkunastu kwantowych memrystorów operującego na kilkunastu fotonach. To poważne wyzwanie technologiczne, przyznaje naukowiec.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Webba zarejestrował pierwsze fotony. Z powodzeniem przebyły one całą drogę przez układ optyczny i trafiły do NIRCam. To jedno z najważniejszych osiągnięć zaplanowanego na trzy miesiące etapu dostrajania teleskopu. Dotychczas uzyskane wyniki odpowiadają oczekiwaniom i naziemnym symulacjom.
      NIRCam to działająca w podczerwieni kamera, rejestrująca fale o długości od 0,6 do 5 mikrometrów. To ona zarejestruje światło z pierwszych gwiazd i galaktyk, pokaże gwiazdy w pobliskich galaktykach, młode gwiazdy w Drodze Mlecznej oraz obiekty w Pasie Kuipera. Wyposażono ją w koronografy, instrumenty pozwalające na fotografowanie bardzo słabo świecących obiektów znajdujących się wokół obiektów znacznie jaśniejszych. Koronografy blokują światło jasnego obiektu, uwidaczniając obiekty słabo świecące. Dzięki nim astronomowie chcą dokładnie obserwować planety krążące wokół pobliskich gwiazd i poznać ich charakterystyki. NIRCam wyposażono w dziesięć czujników rtęciowo-kadmowo-telurkowych, które są odpowiednikami matryc CCD ze znanych nam aparatów cyfrowych. To właśnie NIRCam jest wykorzystywana do odpowiedniego ustawienia zwierciadła webba.
      Żeby zwierciadło główne teleskopu działało jak pojedyncze lustro trzeba niezwykle precyzyjnie ustawić względem siebie wszystkie 18 tworzących je segmentów. Muszę one do siebie pasować z dokładnością do ułamka długości fali światła, w przybliżeniu będzie to ok. 50 nanometrów.
      Teraz, gdy zwierciadło jest rozłożone, a instrumenty włączone, rozpoczęliśmy wieloetapowy proces przygotowywania i kalibrowania teleskopu. Będzie on trwał znacznie dłużej niż w przypadku innych teleskopów kosmicznych, gdyż zwierciadło główne Webba składa się z 18 segmentów, które muszą działać jak jedna wielka powierzchnia, wyjaśniają eksperci z NASA.
      Najpierw trzeba ustawić teleskop względem jego platformy nośnej. Wykorzystuje się w tym celu specjalne systemy śledzenia gwiazd. Obecnie położenie platformy nośnej i segmentów lustra względem gwiazd nie jest ze sobą zgodne. Dlatego też wybrano jedną gwiazdę, jest nią HD 84406, względem której całość będzie ustawiana.
      Każdy z 18 segmentów zwierciadła rejestruje obraz tej gwiazdy, a jako że są one w różny sposób ustawione, na Ziemię trafią różne niewyraźne obrazy. Obsługa naziemna będzie następnie poruszała każdym z segmentów z osobna, by określić, który z nich zarejestrował który z obrazów. Gdy już to będzie wiadomo, segmenty będą obracane tak, by wszystkie z uzyskanych obrazów miały podobny wspólny punkt. Stworzona w ten sposób „macierz obrazów” zostanie szczegółowo przeanalizowana.
      Wówczas rozpocznie się drugi etap ustawiania zwierciadła, w ramach którego zredukowane zostaną największe błędy ustawienia. Najpierw obsługa poruszy nieco zwierciadłem wtórnym, co dodatkowo zdeformuje obrazy uzyskiwane z poszczególnych segmentów. Dzięki temu możliwe będzie przeprowadzenie analizy matematycznej, która precyzyjnie określi błędy w ułożeniu każdego z segmentów. Po skorygowaniu tych błędów otrzymamy 18 dobrze skorygowanych ostrych obrazów.
      W kolejnym etapie położenie każdego z segmentów lustra będzie zmieniane tak, by generowany przezeń obraz trafił dokładnie do środka pola widzenia teleskopu. Każdy z 18 segmentów został przypisany do jednej z trzech grup (oznaczonych jako A, B i C), więc ten etap prac będzie wykonywany w grupach.
      Po zakończeniu trzeciego etapu będziemy już mieli jeden obraz, jednak będzie to nadal obraz uzyskany tak, jakbyśmy nałożyli na siebie obrazy z 18 różnych teleskopów. Zwierciadło główne wciąż nie będzie działało jak jedno lustro. Rozpocznie się, przeprowadzany trzykrotnie, etap (Coarse Phasing) korygowania ustawienia segmentów lustra względem siebie. Po każdej z trzech części tego etapu ustawienia będą sprawdzane i korygowane za pomocą specjalnych elementów optycznych znajdujących się wewnątrz NIRCam (Fine Phasing). W jego trakcie obraz z poszczególnych zwierciadeł celowo będzie ustawiany poza ogniskową i prowadzone będą analizy zniekształceń. Ten ostatni proces superprecyzyjnej korekty ustawień będzie zresztą przeprowadzany rutynowo podczas całej pracy Webba.
      Gdy już teleskop zostanie odpowiednio ustawiony, rozpocznie się etap dostrajania pozostałych trzech instrumentów naukowych. Wyłapane zostaną ewentualne błędy i niedociągnięcia, a specjalny algorytm pokaże, jakich poprawek trzeba dokonać. W końcu, w ostatnim etapie prac, obsługa naziemna osobno sprawdzi jakość obrazu uzyskiwanego dzięki każdemu z segmentów zwierciadła głównego i usunie ewentualne błędy.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...