Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Zły timing sygnałów napędza wzrost guzów nowotworowych

Recommended Posts

Mutacje genetyczne, które mają miejsce w niedrobnokomórkowych rakach płuc mogą prowadzić do rozwoju guza poprzez zakłócanie komórkom odbioru normalnych sygnałów wzrostu. Uczeni z Uniwersytetu Kalifornijskiego w San Francisco (UCSF) mówią, że ich odkrycie może być istotne dla zrozumienia sposobu rozwoju wielu nowotworów oraz może przyczynić się do opracowania metod ich skutecznego zwalczania.

Zdrowe komórki polegają na ścieżce sygnałowej Ras/MAPK, która służy im do interpretowania zewnętrznych danych służących prawidłowemu wzrostowi, podziałowi i migracji. Jeśli jednak dojdzie do zakłóceń w przekazywaniu sygnałów komórki mogą rozpocząć niekontrolowany wzrost oraz agresywną inwazję w różne części organizmu. Tego typu mutacje znajdowane są w większości nowotworów. A to daje nadzieję, że odpowiednie potraktowanie szlaku sygnałowego Ras/MAPK pozwoli na walkę z z nimi.

Podczas dziesięcioleci badań naukowcy doszli do wniosku, że nowotwory napędzane błędami w Ras/MAPK pojawiają się, gdy jeden lub więcej komponentów tego szlaku sygnałowego „zatnie się” na sygnale nakazującym wzrost. Opracowano różne metody, które miałyby wyłączyć taki zacięty włącznik, jednak większość z tych metod nie przeszła testów klinicznych.

Naukowcy z UCSF opracowali nową technikę kontroli Ras/MAPK i dokonali zadziwiającego odkrycia na temat tego szlaku sygnałowego. Ta nowa technika to instrument diagnostyczny, który podłączamy do chorej komórki, stymulujemy ją i otrzymujemy z niej dane oraz obserwujemy jej reakcję. W ten sposób natrafiliśmy na komórki nowotworowe, które nieprawidłowo przetwarzają sygnały, przez co rozprzestrzeniają się, w odpowiedzi na sygnały, które normalnie są filtrowane i zatrzymywane, mówi jeden z autorów badan, doktor Wendell Lim.

Szlak sygnałowy Ras/MAPK jest złożony, jednak można go w uproszczeniu postrzegać jako łańcuch czterech białek – Ras, Raf, Mek oraz Erk (MAPK). Ras znajduje się w błonie komórkowej i jako pierwsze odbiera sygnał. Przekazuje go do Raf i Mek, które sygnał przetwarzają oraz wzmacniają i przekazują do MAPK. Stamtąd sygnał trafia do jądra komórkowego, w którym uruchamia odpowiednie programy genetyczne.

Dotychczas słabo rozumiano, jak czas przekazywania sygnałów wpływa na zachowanie komórki. W San Francisco powstało specjalne narzędzie optogenetyczne, OptoSOS, które za pomocą precyzyjnie dobranych impulsów światła uruchamia Ras. OptoSOS zostało zaimplementowane w wielu różnych liniach komórek zdrowych i nowotworowych, a naukowcy badali, jak zmienia się zachowanie komórek w odpowiedzi na różne wzorce czasowe aktywowania Ras.

Okazało się, że zdrowe komórki selektywnie reagują na długotrwałe sygnały wzrostu, ignorując sygnały krótkotrwałe, które były włączane i wyłączane. Najprawdopodobniej takie krótkotrwałe sygnały są przez te komórki uznawane za szum tła i ignorowane. Tymczasem niektóre linie komórek niedrobnokomórkowych raków płuc błędnie interpretowały te krótkotrwałe sygnały jako sygnały silne i długotrwałe, co prowadziło do ich gwałtownego wzrostu i tworzenia się guza. Specjaliści zajmujący się badaniem nowotworów spodziewają się, że szlak sygnałowy jest ciągle włączony i pracuje na najwyższych obrotach. Nasze eksperymenty pokazały, że istnieje też druga możliwość, gdzie zmutowane komórki wciąż odbierają zmienne sygnały zewnętrzne, ale nieprawidłowo na nie reagują, stwierdza doktor Jared Toettcher z Princeton University.

Wydaje się, że za nieprawidłową interpretację sygnałów odpowiada pewna specyficzna mutacja proteiny B-Raf, która zakłóca timing sygnałów w ten sposób, że krótkie impulsy zlewają się w długie.

Gdy podczas eksperymentów aktywowano Ras krótkimi impulsami z OptoSOS proteina MAPK włączała się i wyłączała po 2 minutach. Jednak w komórkach ze zmutowaną B-Ras po stymulacji przez OptoSOS MAPK była aktywna aż przez 20 minut. Dalsze eksperymenty wykazały, że tak długotrwała aktywność MAPK była związana ze wzrostem i proliferacją komórek.

Okazało się również, że niektóre leki przeciwnowotworowe, których zadaniem jest wyłączenie nadaktywnych komponentów szlaku Ras/MAPK mogą zakłócać sygnały tak, jak zakłóca je zmutowana B-Raf. Szczególnie silne niepożądane działanie zauważono w przypadku środków wemurafenib oraz SB590885 należących do grupy wysoce selektywnych inhibitorów kinazy seroninowo-treoninowej BRAF. Leki te, jak się okazało, spowalniają wyłączenie aktywności szlaku Ras/MAPK, co pozwala zrozumieć, dlaczego przyjmowanie tych środków jest związane ze zwiększonym ryzykiem pojawienia się innych nowotworów.

Te badania zwracają nam uwagę na niedoceniane dotychczas zjawisko timingu sygnałów i sugeruje, że może ono odgrywać ważną rolę w rozwoju wielu nowotworów. W przyszłości mogą powstać narzędzia diagnostyczne i terapeutyczne, które będą brały pod uwagę zakłócenia sygnałów na poziomie funkcjonalnym, których występowania nie można jednoznacznie wykryć za pomocą sekwencjonowania genomu nowotworu, co jest obecnie standardowym postępowaniem badawczym, stwierdził doktor Trever Bivona z UCSF.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Dysbioza, czyli zaburzenia równowagi flory bakteryjnej w jelitach, może przyczyniać się do szeregu chorób, od zapalenia pęcherza, poprzez schorzenia neurodegeneracyjne po nowotwory. Naukowcy Johns Hopkins Kimmel Cancer Center i Bloomberg Kimmel Institute for Cancer Immunotherapy wykazali na modelu mysim, że zaburzenia mikrobiomu piersi mogą odgrywać rolę w rozwoju niektórych nowotworów piersi.
      Od niedawna wiemy, że w piersiach również istnieją różne mikrobiomy. Jednak dotychczas nie potrafiliśmy określić ich ewentualnej roli w rozwoju raka piersi. Skupiliśmy się na porównaniu mikrobiomu piersi zaatakowanych przez nowotwór z piersiami zdrowymi i stwierdziliśmy obecność Bacteroides fragilis w chorych piersiach. Kolonizacja gruczołów mlekowych oraz jelit przez enterotoksynogenny szczep Bacteroides fragilis (ETBF), który wydziela toksynę B. fragilis, szybko prowadzi do hiperplazji tkanki nabłonkowej w gruczole mlekowym, napisali autorzy badań. Ich wyniki zostały opublikowane w artykule A pro-carcinogenic colon microbe promotes breast tumorigenesis and metastatic progression and concomitantly activates Notch and βcatenin axes.
      Naukowcy zaobserwowali, że za każdym razem, gdy do jelit lub przewodów mlecznych myszy wprowadzali ETBF, dochodziło do rozrostu guza i jego przerzutowania.
      Jeden z głównych autorów badań, profesor onkologii Dipali Sharma z Johns Hopkins Medicine przypomina, że o ile wiedzieliśmy, że mikroorganizmy żyją w przewodzie pokarmowym, nosie czy na skórze, to jeszcze do niedawna sądzono, iż tkanka piersi jest sterylna. Nasze badania wskazują na kolejny czynnik ryzyka, czyli mikrobiom. Jeśli masz zaburzony mikrobiom lub gdy w twoim organizmie znajdują się toksynogenne mikroorganizmy z funkcjami onkogennymi, może być to uznawane za czynnik ryzyka rozwoju raka piersi, mówi.
      Poza badaniami na myszach naukowcy przeprowadzili tez metaanalizę danych klinicznych, w ramach której przyjrzeli się wynikom badań porównujących mikrobiom łagodnych i złośliwych guzów piersi u osób, które przeżyły nowotwór oraz u zdrowych ochotników. Okazało się, że B. fragilis był obecny we wszystkich tkankach oraz w płynach znajdujących się w piersiach osób, które przeżyły nowotwór.
      W ramach badań naukowcy doustnie podawali myszom ETBF. Bakterie najpierw skolonizowały jelita, a w ciągu trzech tygodni w tkance piersi pojawiły się oznaki hiperplazji, czyli nieprawidłowego rozrostu, mogącego prowadzić do rozwoju nowotworu. Oznaki hiperplazji pojawiły się też po 2-3 tygodniach od wstrzyknięcia ETBF bezpośrednio do tkanki piersiowej. Komórki, które były wystawione na działanie toksyny wykazywały szybszy rozrost guza. Stwierdzono, że w proces były zaangażowane szlaki sygnałowe Notch1 oraz β-kateniny.
      Autorzy sugerują, by badania mikrobiomu włączyć do profilaktyki raka piersi. To jeden ze wskaźników. Może być ich wiele. Jeśli znajdziemy kolejne bakterie odpowiedzialne za rozwój nowotworu, możemy z łatwością badać stolec pod kątem ich występowania. Kobiety szczególnie narażone na ryzyko raka piersi mogą mieć liczne populacje takich bakterii, mówi Sheetal Parida z Johns Hopkins Medicine.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badania prowadzone przez naukowców z Kanady sugerują, że rozwój glejaka wielopostaciowego – niezwykle agresywnego i śmiertelnego nowotworu mózgu – może być powiązany z procesem zdrowienia mózgu. Uraz, udar czy infekcja mogą napędzać nowotwór, gdy nowe komórki, mające zastąpić te zniszczone w czasie urazu, ulegną mutacjom. Odkrycie może doprowadzić do rozwoju nowych technik walki z glejakiem, jednym z najtrudniejszych w leczeniu nowotworów mózgu u dorosłych.
      Zdobyte przez nas dane wskazują, że odpowiednie mutacje w konkretnych komórkach mózgu mogą mieć swoją przyczynę w urazie i prowadzić do rozwoju nowotworu, mówi doktor Peter Dirks, ordynator oddziału neurochirurgii w Hospital for Sick Children (SickKids). W badaniach brali też udział naukowcy z University of Toronto oraz Princess Margaret Cancer Centre.
      Glejak może być postrzegany jako rana, która nigdy się nie goi. Jesteśmy podekscytowani naszym odkryciem, gdyż mówi nam ono, w jaki sposób nowotwór się zaczyna i jak rośnie. To zaś pozwala nam myśleć o nowych sposobach leczenia skoncentrowanych na ranie i odpowiedzi zapalnej, dodaje Dirks.
      Obecnie istnieją bardzo ograniczone możliwości leczenia glejaka, a pacjenci żyją średnio zaledwie 15 miesięcy od postawienia diagnozy. Niepowodzenie w leczeniu ma swoje korzenie w dużej różnorodności zarówno pomiędzy guzami, jak i pacjentami. Glejaki zawierają wiele różnych typów komórek, w tym rzadkie komórki macierzyste glejaka (GSC), które napędzają wzrost guza, wyjaśnia Dirks.
      Zespół Dirksa już wcześniej wykazał, że GSC zapoczątkowują glejaka i jego wznowę po leczeniu. Dlatego też postanowili bliżej przyjrzeć się tym komórkom. Wykorzystali w tym celu najnowsze techniki sekwencjonowania RNA oraz maszynowego uczenia się. Stworzyli na tej podstawie molekularną mapę GSC pobranych z guzów 26 pacjentów.
      Uzyskane wyniki potwierdziły istnienie olbrzymiego zróżnicowania, co wskazuje, że każdy z guzów zawiera wiele podtypów molekularnie zróżnicowanych GSC. To powoduje, że po leczeniu guz prawdopodobnie powróci, gdyż stosowane terapie nie są w stanie zabić wszystkich tych podtypów komórek. Naszym celem jest znalezienie leku, który zabije wszystkie rodzaje komórek macierzystych glejaka. By jednak tego dokonać musimy najpierw zrozumieć budowę molekularną tych komórek, mówi profesor Gary Bader z University of Toronto.
      Co interesujące, znaleziono liczne podtypy GSC, których budowa molekularna wskazywała na związki ze stanem zapalnym. To wskazywało, że przynajmniej niektóre glejaki rozpoczynają się w wyniku naturalnego procesu leczenia po urazie. Dirks mówi, że do takich mutacji rozpoczynających glejaka może dochodzić na wiele lat przed pojawieniem się choroby. Niewykluczone, że gdy w procesie leczenia mózgu po urazie pojawia się zmutowana komórka, nie może przestać się ona dzielić, gdyż nie działają jej mechanizmy kontrolne i w wyniku tego procesu dochodzi do rozwoju guza.
      Gdy uczeni jeszcze bliżej przyjrzeli się komórkom, okazało się, że każdy guz znajduje się w jednym z dwóch stanów molekularnych – roboczo nazwanych „rozwojowym” i „odpowiedzią na uraz” – lub gdzieś na gradiencie pomiędzy nimi. Stan „rozwojowy” to znak rozpoznawczy komórek macierzystych i przypomina stan, w którym komórki macierzyste mózgu bardzo szybko się dzielą przed urodzeniem. Drugi ze stanów był zaś dla naukowców niespodzianką. Nazwali go oni „odpowiedzią na uraz”, gdyż ma tam miejsce zwiększenie ekspresji szlaków immunologicznych i markerów zapalnych, takich jak interferon i TNFalfa. To wskaźniki toczącego się procesu zdrowienia. Zjawiska te udało się zauważyć dopiero teraz, dzięki nowoczesnym technikom sekwencjonowania RNA pojedynczych komórek.
      Dalsze eksperymenty pokazały, że oba te stany są wrażliwe na różne typy usunięcia genów. Ujawniono w ten sposób potencjalne metody leczenia, które dotychczas nie były brane pod uwagę przy glejaku. Badania pokazały też, że względny stosunek obu stanów jest cechą indywidualną każdego guza. Komórki każdego z nich mogą znajdować się w różnym miejscu na osi pomiędzy stanem „rozwojowym” a „odpowiedzią na uraz”. Podczas gdy GSC każdego pacjenta składają się z różnych populacji, wszystkie one znajdują się na jedne biologicznej osi pomiędzy dwoma stanami definiowanymi przez procesy neurorozwoju i zapalne, stwierdzają autorzy badań.
      Teraz Kanadyjczycy zastanawiają się nad metodami leczenia. Odkryta przez nas heterogeniczność komórek macierzystych wskazuje, że trzeba opracować terapie biorące na cel jednocześnie procesy rozwojowe i zapalne. Szukamy leków, które działają w różnych miejscach osi między oboma stanami. Istnieje tutaj potrzeba rozwoju zindywidualizowanego podejścia do pacjenta. Trzeba będzie wykonać badania guza na poziomie pojedynczej komórki i na tej podstawie przygotować koktajl leków, który w tym samym momencie będzie działał na różne podtypy komórek macierzystych, stwierdza doktor Trevor Pugh z Princess Margaret Cancer Centre.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ludzie, w porównaniu do naszych najbliższych kuzynów – szympansów – są szczególnie podatni na rozwój złośliwych nowotworów pochodzących z tkanki nabłonkowej. Nawet wówczas, gdy brak genetycznej podatności na takie choroby czy gdy nie mają styczności z czynnikami ryzyka, np. z tytoniem. Badania przeprowadzone w Uniwersytecie Kalifornijskim w San Diego (UCSD) pozwalają wyjaśnić, dlaczego tak się dzieje.
      Na łamach FASEB BioAdvances ukazał się artykuł, którego autorzy informują, że za co najmniej część tej podatności możemy obwiniać unikatową mutację genetyczną, która pojawiła się w czasie ewolucji Homo sapiens.
      W pewnym momencie ludzkiej ewolucji gen SIGLEC12, a konkretnie proteina Siglec-12, którą gen ten koduje na potrzeby układu odpornościowego, uległ mutacji. W jej wyniku utracił on zdolność rozróżniania pomiędzy własnymi a obcymi mikroorganizmami, mówi profesor Ajit Varki z San Diego School of Medicine i Moores Cancer Center. Jednak gen ten nie zniknął z populacji. Wydaje się, że ta dysfunkcyjna proteina Siglec-12 zaczęła czynić szkody u mniejszości ludzi, których organizmy wciąż ją wytwarzają.
      Podczas badań zdrowych i nowotworowych tkanek naukowcy zauważyli, że około 30% osób, które wciąż wytwarzają proteiny Siglec-12 jest narażonych na niemal 2-krotnie wyższe ryzyko pojawienia się zaawansowanego nowotworu niż ludzie, którzy Siglec-12 nie wytwarzają.
      Pomimo utraty ważnego miejsca wiązania kwasu sjalowego proteina Siglec-12 rekrutuje białko Shp2 i przyspiesza wzrost guza w modelu mysim. Sądzimy, że ta dysfunkcyjna proteina Siglec-12 ułatwia u ludzi rozwój złośliwych nowotworów, co zgadza się ze znanymi sygnaturami nowotworów Shp2-zależnych.
      Jak dodaje Ajit Varki, badania takie mogą przydać się w diagnostyce i leczeniu nowotworów. Uczeni już opracowali test z moczu, który pozwala na wykrycie dysfunkcyjnej proteiny. Być może będziemy też w stanie selektywnie wykorzystać przeciwciała przeciwko Siglec-12 podczas chemioterapii i dostarczać je do komórek nowotworowych, bez szkodzenia zdrowym komórkom, dodaje.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Radioterapia to jedna z najczęściej stosowanych metod leczenia nowotworów. Wykorzystuje się wówczas cząstki lub fale o wysokich energiach, które niszczą lub uszkadzają komórki nowotworowe. Niestety istnieją nowotwory, które potrafią zyskać oporność na radioterapię, a w niektórych przypadkach zastosowanie tej metody powoduje nawet, że nowotwór staje się bardziej inwazyjny, pogarszając prognozy pacjenta.
      Naukowcy z Global Center for Biomedical Science and Engineering, założonego przez Hokkaido University i Uniwersytet Stanforda, odkryli mechanizm powodujący, że molekuły Arl8B i BORC zwiększają agresywność nowotworów po radioterapii.
      Wykazaliśmy, że zwiększona zdolność do przerzutowania wśród komórek nowotworowych, które przetrwały radioterapię, jest związana ze zmianami w procesie egzocytozy do lizosomów. Zmiany te wywoływane są zwiększoną aktywacją Arl8b. To GTPaza regulująca transport w lizosomach, stwierdzili naukowcy. Odkryli też, że knockdown Arl8b lub podjednostek BORC zlokalizowanych na powierzchni błony lizosomalnej, zmniejsza egzocytozę i inwazyjność komórek nowotworowych.
      W ostatnim czasie pojawia się coraz więcej badań wskazujących na rolę lizosomów w biologii guzów nowotworowych. Teraz uczeni potwierdzili, że po radioterapii dochodzi do zwiększonego wydzielania enzymów z lizosomów, co z kolei prowadzi do degradacji materiału łączącego komórki guza, przez co uwalniają się one i wywołują przerzuty. Głównym winowajcą zwiększonego przerzutowania jest tutaj Arl8b.
      Powyższe badania sugerują, że lizosomy mogą stać się atrakcyjnym celem nowych terapii przeciwnowotworowych.
      Praca Lysosomal trafficking mediated by Arl8b and BORC promotes invasion of cancer cells that survive radiationzostała opublikowana na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Gladstone Institutes we współpracy z badaczami z Uniwersytetu Kalifornijskiego w San Francisco (UCSF) i Uniwersytetu Technicznego w Monachium (TUM) stworzyli mapę genetyczną, dzięki której są w stanie odróżnić regulatorowe limfocyty T od pozostałych limfocytów T. Odkrycie to pozwoli na stworzenie terapii, które pozwolą na wzmacnianie lub osłabianie działania regulatorowych limfocytów T.
      Odkrycie sieci powiązań genetycznych, które kontrolują biologię regulatorowych limfocytów T to pierwszy krok w kierunku znalezienia leków zmieniających funkcję tych komórek, co pomoże w terapii nowotworów i chorób autoimmunologicznych, mówi doktor Alex Marson, dyrektor Gladstone-UCSF Institute of Genomic Immunology. Ludzkie regulatorowe limfocyty T (Treg) są niezbędnym składnikiem homeostazy immunologicznej. [...] zidentyfikkowaliśmy czynniki transkrypcyjne, które regulują krytyczne proteiny Treg zarówno w warunkach bazowych, jak i prozapalnych, stwierdzają naukowcy.
      Dotychczasowe badania na myszach wskazują, że zwiększenie liczby regulatorowych limfocytów, T, a tym samym wytłumienie układu odpornościowego, pomaga zwalczać objawy chorób autoimmunologicznych. Z drugiej zaś strony, zablokowanie Treg, a tym samym zwiększenie aktywności układu odpornościowego, może pomagać w skuteczniejszej walce z nowotworami.
      Obecnie testowane są na ludziach terapie polegające na zwiększeniu liczby Treg. Polegają one na pobieraniu od pacjentów tych komórek, namnażaniu ich i ponownych wstrzykiwaniu. Dotychczas jednak w takich terapiach nie zmienia się samego działania komórek.
      Większość naszej wiedzy o Treg pochodzi z modeli mysich. Chcieliśmy zidentyfikować geny związane z działaniem Treg, by lepiej zrozumieć, jak wszystko jest ze sobą połączone i móc manipulować działaniem tych komórek. Gdy już rozumiemy funkcje każdego z genów możemy precyzyjnie edytować komórki i zwalczać choroby, wyjaśnia profesor Kathrin Schumann z Monachium.
      Podczas swoich najnowszych badań naukowcy selektywnie usuwali jeden z 40 czynników transkrypcyjnych, by zmienić działanie Treg. Wybrali te właśnie czynniki, gdyż wcześniejsze badania wskazywały, że mogą one odgrywać specyficzne funkcje w działaniu Treg w odróżnieniu od innych limfocytów T. Następnie skupili się na 10 czynnikach, które wywierały największy wpływ na funkcjonowanie regulatorowych limfocytów T. Za każdym razem przyglądali się tysiącom genów, by sprawdzić, jak zmieniło się ich działanie w wyniku manipulacji czynnikiem transkrypcyjnym. W ten sposób przebadali aż 54 424 indywidualne komórki Treg.
      Dzięki tak szczegółowej analizie byli w stanie stworzyć rozległą mapę powiązań genetycznych i czynników transkrypcyjnych, które wpływały na pracę Treg. Jednym z najbardziej zaskakujących odkryć było spostrzeżenie, że słabo poznany czynnik HIVEP2 bardzo silnie oddziałuje na funkcjonowanie Treg. Po przeprowadzeniu badań na myszach naukowcy zauważyli, że usunięcie genu HIVEP2 obniżyło zdolność Treg do zwalczania stanu zapalnego. To ważne odkrycie. Wcześniej tak naprawdę nigdy nie rozważano roli HIVEP2 w biologii Treg, mówi Sid Raju z MIT i Harvarda.
      Naukowcy mówią, że ich badania pokazują też, jak potężnymi narzędziami badawczymi obecnie dysponujemy. Teoretycznie możemy wziąć dowolną komórkę ludzkie organizmu, wybiórczo usuwać z niej pojedyncze geny i badać wpływ takich działań na funkcjonowanie tej komórki. To naprawdę otwiera drogę do traktowania ludzkich komórek jako eksperymentalnego systemu.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...