Jump to content
Forum Kopalni Wiedzy

Recommended Posts

W ubiegłym roku DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych) ogłosiła warty 1,5 miliarda dolarów program Electronic Resurgence Initiative (ERI). Będzie on prowadzony przez pięć lat, a w jego wyniku ma powstać technologia, która zrewolucjonizuje sposób projektowania i wytwarzania układów scalonych. Przeznaczona nań kwota jest czterokrotnie większa, niż typowe wydatki DARPA na projekty związane ze sprzętem komputerowym.

W ostatnich latach postęp w dziedzinie sprzętu wyraźnie nie nadąża za postępem w dziedzinie oprogramowania. Ponadto Stany Zjednoczone obawiają się, że gdy przestanie obowiązywać Prawo Moore'a, stracą obecną przewagę na polu technologii. Obawa ta jest tym większa, że inne państwa, przede wszystkim Chiny, sporo inwestują w przemysł IT. Kolejny problem, to rosnąc koszty projektowania układów scalonych.

Jednym z celów ERI jest znaczące skrócenie czasu projektowania chipów, z obecnych lat i miesięcy, do dni. Ma to zostać osiągnięte za pomocą zautomatyzowania całego procesu wspomaganego technologiami maszynowego uczenia się oraz dzięki nowym narzędziom, które pozwolą nawet mało doświadczonemu użytkownikowi na projektowanie wysokiej jakości układów scalonych.

Obecnie nikt nie potrafi zaprojektować nowego układu scalonego w ciągu 24 godzin bez pomocy człowieka. To coś zupełnie nowego, mówi Andrew Kahng z Uniwersytetu Kalifornijskiego w San Diego, który stoi na czele jednego z zespołów zakwalifikowanych do ERI. Próbujemy zapoczątkować w elektronice rewolucję na miarę tej, jakiej dokonały browary rzemieślnicze na rynku sprzedaży piwa, stwierdził William Chapell, którego biuro z ramienia DARPA odpowiada za ERI. Innymi słowy, DARPA chce, by małe firmy mogły szybko i tanio projektować i produkować wysokiej jakości układy scalone bez polegania na doświadczeniu, zasobach i narzędziach dostarczanych przez rynkowych gigantów.

Gdy Prawo Moore'a przestanie obowiązywać, najprawdopodobniej będziemy potrzebowali nowych materiałów i nowych sposobów na integrację procesora z układami pamięci. Ich znalezienie to jeden z celów ERI. Inny cel to stworzenie takiego sposobu integrowania ze sobą procesora i pamięci, który wyeliminuje lub znacząco ograniczy potrzebę przemieszczania danych pomiędzy nimi. W przyszłości zaś miałby powstać chip, który w tym samym miejscu będzie przechowywał dane i dokonywać obliczeń, co powinno znacząco zwiększyć wydajność i zmniejszyć pobór energii. DARPA chce też stworzyć sprzęt i oprogramowanie, które mogą być rekonfigurowane w czasie rzeczywistym do nowych zadań.

Niektóre założenia ERI pokrywają się z tym, nad czym pracuje obecnie prywatny przemysł komputerowy. Przykładem takiego nakładania się jest próba stworzenia technologii 3-D system-on-chip. Jej zadaniem jest przedłużenie obowiązywania Prawa Moore'a za pomocą nowych materiałów jak np. węglowe nanorurki oraz opracowania lepszych sposobów łączenia ze sobą poszczególnych elementów układu scalonego.

Podnoszą się jednak głosy mówiące, że DARPA i inne agendy rządowe wspierające badania IT, takie jak np. Departament Energii, powinny przeznaczać więcej pieniędzy na takie projekty. Profesor Erica Fuchs z Carnegie Mellon University zauważa, że prywatne przedsiębiorstwa skupiają się obecnie na bardziej wyspecjalizowanych zastosowaniach i mniej chętnie biorą udział w dużych wspólnych projektach. Zdaniem uczonej wysiłki amerykańskich agend rządowych w tym zakresie są o rząd wielkości za małe w stosunku do wyzwań, które czekają nas w najbliższej przyszłości.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Już teraz przecież Samsung Galaxy S9 jest chyba produkowany w technologiii 10 nm,a granicą jest chyba 1 nm,jest wiele technologii,było gdzieś tutaj mówione o grafenowych komputerach,kwantowych,dna i innych,to kwestia czasu,kiedy trzeba będzie się zdecydować na jakieś rozwiązanie,liczę na sukces w tej dziedzinie nauki,już teraz są komputery z 1 TB pamięci,tylko co się stanie,jeśli nic nie wymyślimy,sprzęt zacznie tanieć czy odwrotnie?

Edited by GodSI

Share this post


Link to post
Share on other sites

Jestem całkowicie spokojna o prawo Moore'a, gdyż - jak pisał już niejednokrotnie - to nie jest prawo fizyczne tylko ekonomiczne. Taki postęp lekki i nie za szybki pozwala najbardziej maksymalizować zyski. To taka możliwie najwolniejsza kontrolowana "rewolucja" zapewniająca możliwie  najwięcej stopni typu "wymiana sprzętu na nowocześniejszy". Robi się wszystko aby postęp zabierał jak najmniej funduszy a jak najwięcej przynosi dochodu z wymiany sprzętu. Współczynnik Moore'a idealnie do tego pasuje więc zostanie zachowany.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Firma Taiwan Semiconductor Manufacturing Co. (TSMC), największy na świecie producent układów scalonych na zlecenie, poinformowała, że wybuduje fabrykę półprzewodników w Japonii. To już druga tego typu zapowiedź w ostatnim czasie. Przed kilkoma miesiącami TSMC ogłosiła, że zainwestuje 12 miliardów dolarów w budowę nowej fabryki w Arizonie.
      Prace budowlane w Japonii rozpoczną się  przyszłym roku, a masowa produkcja chipów ma rozpocząć się w roku 2024. Japoński zakład będzie wyposażony w linie do produkcji w technologii 22 i 28 nanometrów. Będzie więc mniej zaawansowany technologicznie niż fabryka w Arizonie, gdzie powstanie 7-nanometrowa linia technologiczna. W Kraju Kwitnącej Wiśni z taśm produkcyjnych TSMC będą zjeżdżały podzespoły dla produktów konsumenckich, przemysłu samochodowego oraz Internet of Things.
      Dyrektor wykonawczy TSMC, C.C. Wei, poinformował, że firma otrzymała pomoc od japońskiego rządu i swoich japońskich klientów. Nie ujawnił wartości inwestycji, ale zrobił to premier Japonii Fumi Kishida, który poinformował parlament, że budowa pochłonie 8,8 miliarda USD, a część kosztów weźmie na siebie rząd.
      Japońska prasa dowiedziała się, że fabryka powstanie w prefekturze Kumamoto na zachodzie kraju, na ternie należącym do Sony i w pobliżu fabryki Sony, w której powstają matryce światłoczułe. Taka lokalizacja ma spory sens, gdyż Sony jest największym japońskim klientem TSMC.
      Światowy przemysł wciąż ma poważny problem z dostępnością półprzewodników. Niedawno Apple poinformował że najprawdopodobniej będzie zmuszony zmniejszyć tegoroczną produkcję iPhone'ów 13 nawet o 10 milionów sztuk. Do zmniejszenia produkcji została zmuszona też Toyota.
      Pandemia z pełną mocą ujawniła, jak bardzo producenci elektroniki z Europy, USA i Japonii są uzależnieni od chińskich, tajwańskich i południowokoreańskich producentów półprzewodników. Rozpoczęto więc działania, które mają zapobiegać tego typu sytuacjom w przyszłości. Sekretarz Handlu USA zaproponowała przeznaczenie 52 miliardów dolarów na badania nad półprzewodnikami i ich produkcję, Europa chce zwiększyć swoje możliwości produkcyjne, podobnie robi też Japonia. Na Uniwersytecie Tokijskim powołano dwie specjalne organizacje – Research Association for Advanced Systems (RAAS) oraz d.lab – których celem będzie ułatwienie wymiany technologicznej. W ramach RAAS, do której wstęp jest ograniczony, firmy takie jak TSMC, Hitachi czy Toppan mogą wymieniać się swoim know-how oraz korzystać z wyników zaawansowanych badań materiałowych, fizycznych i chemicznych prowadzonych na Uniwersytecie Tokijskim.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Anna Tomańska, studentka Wydziału Medycyny Weterynaryjnej Uniwersytetu Przyrodniczego we Wrocławiu (UPWr), bada komunikację pszczół. Chce sprawdzić, jakie dźwięki wydają, gdy są zadowolone, zaniepokojone czy chore. Interesuje się też wykorzystaniem nowoczesnych urządzeń w hodowli tych owadów. Jej wnioski mogą być bardzo przydatne dla pszczelarzy.
      Tomańska interesuje się pszczelarstwem od 2 lat. Sporo zawdzięcza w tym zakresie opiekunowi projektu, prof. UPWr, dr. hab. Pawłowi Chorbińskiemu. Pan profesor to autorytet w dziedzinie pszczelarstwa i potrafi skutecznie zarażać swoją pasją – podkreśla studentka.
      Już wcześniej interesowałam się bioakustyką. Wspólnie z inżynierem dźwięku i producentem radiowym z Wielkiej Brytanii Philipem Millem napisaliśmy artykuł o nagrywaniu dźwięków przyrody i technologiach. To wtedy, w naszych rozmowach, po raz pierwszy pojawił się temat pszczół. Pomyślałam, że dźwięki z wnętrza ula mogą być nie tylko fascynujące, ale niezwykle ciekawe pod kątem testowania nowoczesnych urządzeń w hodowli tych owadów.
      Gdy o pomyśle dowiedział się prof. Chorbiński, namówił Tomańską, by zgłosiła się do programu stypendialnego "Magistrant wdrożeniowy na UPWr".
      Studentka wykorzystała drewniane ule wielkopolskie. Wygłuszyła je za pomocą pianki akustycznej, a następnie zainstalowała elektronikę (czujniki ciepła i wilgotności). Ule znajdują się w powstającej właśnie nowoczesnej pasiece w Górach Sowich.
      Tomańska przez kilka miesięcy nagrywała dźwięki z ula, a także rejestrowała zmiany temperatury i wilgotności.
      Pszczoły nie tylko bzyczą, w ulu słychać też np. ich tupanie oraz komunikację. Ta ostatnia jest fascynująca, dlatego chcemy sprawdzić, czym będzie różnić się, kiedy np. w ulu będzie matka z mniejszą/większą liczbą robotnic, sama matka albo dwie matki. Chcemy wyselekcjonować dźwięki, jakie wydają spokojne pszczoły, od tych, które słychać, gdy są zaniepokojone - tłumaczy studentka. Podobnie z temperaturą: w jakich sytuacjach spada, a kiedy rośnie. Analiza i wnioski z tych badań z pewnością pomogą pszczelarzom. Będą mogli na odległość, za pomocą elektroniki, zapobiegać niebezpiecznym sytuacjom w pasiece - dodaje.
      Kilkunastominutowego audioeseju o pszczołach miodnych, który powstał w ramach projektu "Magistrant wdrożeniowy", można wysłuchać dzięki Radiu Warroza.
       

      Owocem współpracy Tomańskiej i Milla jest ebook "Bioakustyka". Jak podkreślono w opisie książki, jest to krótki przewodnik, który pomoże Ci postawić pierwsze kroki w nagrywaniu przyrody. W listopadzie zeszłego roku w paśmie gościnnym Radia Kapitał zadebiutowała też ich audycja o Borach Tucholskich.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nowy półprzewodnik, arsenek boru (BAs), ma wysoką przewodność cieplną i może być zintegrowany ze współczesnymi chipami, by odprowadzić z nich ciepło i poprawić tym samym ich wydajność. Materiał ten lepiej rozprasza ciepło niż najlepsze dostępnie obecne systemy do chłodzenia podzespołów komputerowych – twierdzą twórcy arsenku boru.
      Coraz większa miniaturyzacja, możliwość umieszczenia na tej samej powierzchni coraz większej liczby tranzystorów, oznacza, że procesory są coraz szybsze. Pojawiają się jednak problemy z odprowadzaniem ciepła, szczególnie w postaci lokalnych punktów znacznie wyższej temperatury. Ciepło to negatywnie wpływa na wydajność układów.
      Yongjie Hu z Uniwersytetu Kalifornijskiego w Los Angeles stworzył niedawno wolny od wad arsenek boru. To materiał, który rozprasza ciepło znacznie lepiej niż inne metale i półprzewodniki, jak diament czy węglik krzemu. Hu i jego koledzy wykazali też, że można go zintegrować z układami scalonymi zawierającymi tranzystory z azotku galu. Następnie przeprowadzili badania, które wykazały, że w układzie scalonym ze zintegrowanym arsenkiem boru, pracującym z niemal maksymalną wydajnością, temperatura najcieplejszych punktów jest znacznie niższa niż w układach chłodzone za pomocą innych materiałów.
      W czasie eksperymentów punktowa temperatura układów scalonych z arsenkiem boru wzrosła od temperatury pokojowej do nieco poniżej 87 stopni Celsjusza, podczas gdy chłodzonych diamentem wyniosła niemal 137 stopni, a chłodzonych węglikiem krzemu – zbliżyła się do 167 stopni Celsjusza.
      Wykazaliśmy, że możemy przetwarzać strukturę BAs i integrować ją z chipem o wysokiej mobilności elektronów. To bardzo obiecujące rozwiązanie dla wysoko wydajnej elektroniki, mówi Hu.
      Dodatkową zaletą arsenku boru jest jego bardzo niski opór cieplny na styku z innym materiałem. To zaś oznacza, że transport ciepła odbywa się szybciej niż w przypadku konkurencyjnych rozwiązań. To tak, jakby ciepło mogło przeskoczyć przez przeszkodę, jaką stanowi styk dwóch materiałów, w porównaniu z innymi rozwiązaniami, gdzie zwalnia, by ostrożnie przeszkodę przekroczyć, wyjaśnia Hu.
      Naukowcy, zachęceni wynikami swoich eksperymentów, planują teraz zintegrować swój materiał z różnymi rodzajami obwodów i chipami o różnej architekturze.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rynkowy sukces lub porażka układu scalonego zależą w dużej mierze od etapu jego projektowania. Wtedy właśnie zostają podjęte decyzje odnośnie umiejscowienia na krzemie modułów pamięci i elementów logicznych. Dotychczas zadania tego nie udawało się zautomatyzować, a etap projektowania zajmuje inżynierom całe tygodnie lub miesiące. Inżynierowie Google'a poinformowali właśnie, że stworzony przez nich system sztucznej inteligencji poradził sobie z częściowym zaprojektowaniem chipa w ciągu godzin.
      Współczesne układy scalone składają się z miliardów tranzystorów, dziesiątek milionów bramek logicznych, tysiące bloków logicznych i łączących je kilometrów ścieżek. Lokalizacja poszczególnych układów i bloków logicznych odgrywa kluczową rolę dla przyszłej wydajności chipa. Specjaliści od dziesięcioleci pracują nad rozwiązaniami pozwalającymi zautomatyzować proces projektowania.
      Jako że bloki logiczne to duże elementy, tysiące i miliony razy większe od bramek logicznych, bardzo trudno jest jednocześnie umieszczać bloki i bramki. Dlatego współcześni projektanci układów najpierw umieszczają na krzemie bloki, a wolne miejsca zostają zapełnione pozostałymi bramkami logicznymi.
      Już samo rozmieszczenie bloków jest niezwykle wymagające. Eksperci Google'a obliczyli, że liczba możliwych kombinacji rozmieszczenia makrobloków, które brali pod uwagę w swoich badaniach, wynosi 102500.
      Planując rozmieszczenie bloków, inżynierowie muszą pamiętać o pozostawieniu miejsca na inne elementy i ich łączenie. Azalia Mirhoseini i jej zespół poinformowali na łamach Nature o stworzeniu metody automatycznego wstępnego projektowania chipa w czasie krótszym niż 6 godzin, które swoimi wynikami dorównuje lub nawet przewyższa to, co potrafią doświadczeni inżynierowie.
      naukowcy z Google'a wykorzystali techniki maszynowego uczenia się do wytrenowania swojego programu tak, by rozmieszczał na planie makrobloki. Po umieszczeniu każdego z nich program dokonuje oceny całego chipa, a następnie wykorzystuje to, czego się nauczył, do zaplanowania jak najlepszego kolejnego kroku.
      Co interesujące, projekty tworzone przez google'owską SI znacząco różnią się od tego, jak projektuje człowiek. Sztuczna inteligencja rozpoczyna od największych makrobloków. Ponadto w jakiś sposób unika ciągłego poprawiania tego, co już zostało zrobione. Inżynierowie, po umieszczeniu kolejnych bloków, bardzo często poprawiają rozmieszczenie następnych. SI tego nie robi. Mimo to udało jej się zaprojektować układy, w których sygnał pomiędzy poszczególnymi elementami biegnie równie sprawnie, co między układami zaprojektowanymi przez ludzi.
      Google już stosuje metody opracowane prze Mirhoseini do projektowania układów dla przyszłej generacji systemów sztucznej inteligencji. Tymczasem producenci układów scalonych próbują odtworzyć osiągnięcie Google'a i wdrożyć podobne rozwiązania do własnego procesu projektowania.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...