-
Similar Content
-
By KopalniaWiedzy.pl
Naukowcy z Brookhaven National Laboratory zbudowali i przetestowali spolaryzowane działo elektronowe pracujące przy najwyższym napięciu ze wszystkich tego typu urządzeń. Działo jest kluczowym elementem budowanego właśnie Zderzacza Elektron-Jon (EIC). W akceleratorze zderzane będą spolaryzowane elektrony ze spolaryzowanymi protonami i jonami, co pozwoli na badanie podstawowych cegiełek materii.
Zadaniem wspomnianego na wstępie działa będzie dostarczanie strumienia cząstek do tunelu akceleratora o długości niemal 4 kilometrów. Przyspiesza ono elektrony od 0 do 80% prędkości światła na przestrzeni zaledwie 5 centymetrów. Oznacza to, że przyspieszenie od 0 do 863,4 milionów km/h następuje w ciągu 2 dziesięciomiliardowych części sekundy. Jednak nie prędkość tu jest najważniejsza, ta zostanie jeszcze zwiększona w tunelu akceleratora. Największym sukcesem jest możliwość wytwarzania w dziale strumieni cząstek o odpowiednich charakterystykach. Działo dostarcza niewielkich ściśle upakowanych pakietów elektronów, których spiny są w większości zwrócone w tym samym kierunku. To ta wielka gęstość upakowania powoduje, że zwiększa się prawdopodobieństwo doprowadzenia do zderzeń elektronów z protonami lub jonami, które w tunelu akceleratora pędzą w przeciwnym kierunku.
Uzyskanie polaryzacji, czy uzgodnienia spinów cząstek, jest niezwykle ważne z punktu widzenia możliwości osiągnięcia celów naukowych akceleratora. Badanie pochodzenia zjawiska spinu to zresztą jeden z nich. Spin jest odpowiedzialny za strukturę i uporządkowanie materii. Wciąż jednak nie wiemy, jak on powstaje.
EIC będzie pierwszym akceleratorem, w którym naukowcy mogą kontrolować spin zarówno elektronów, jak i jonów. To zaś powinno pozwolić na zmapowanie dystrybucji kwarków i gluonów w protonach i jądrach atomowych oraz zbadać strukturę protonu. Dzięki temu naukowcy mają nadzieję lepiej zrozumieć interakcje pomiędzy kwarkami a gluonami. Interakcje te zachodzą za pomocą oddziaływań silnych, które są najpotężniejszymi oddziaływaniami w naturze.
Wysoce spolaryzowany strumień elektronów osiągnięto dzięki fotokatodzie z arsenku galu. Naukowcy ułożyli go w naprzemienne warstwy. To bardzo złożona wielowarstwowa struktura o grubości 100 nanometrów umieszczona na 0,4-milimetrowym podłożu, wyjaśnia fizyk Erdon Wang. Gdy światło lasera o odpowiednich proporcjach trafia w fotokatodę, opuszcza ją strumień elektronów o uzgodnionych spinach i odpowiednich właściwościach.
Podczas testów nowe działo osiągnęło w ciągu 23 godzin napięcie 350 kV i pracowało bez przerwy przez kolejnych 6 miesięcy. Generowało pakiety składające się z 70 miliardów elektronów każdy. Badania jakości pokazały, że tak uzyskane elektrony mają wszystkie właściwości potrzebne do przeprowadzenia zderzeń. W ciągu dwóch lat testów napięcie zawsze było bardzo stabilne. Nasze działo elektronowe charakteryzuje się najwyższym napięciem i największą intensywnością spolaryzowanego strumienia elektronów, cieszy się Wang.
Zderzacz Elektron-Jon powstaje w Brookhaven National Laboratory na bazie istniejącego tam Relativistic Heavy Ion Collider. Głównym elementem konstrukcji EIC będzie dodanie do RHIC dodatkowego pierścienia tak, by urządzenie składało się z dwóch krzyżujących się akceleratorów. W jednym z nich będą krążyły elektrony, w drugim protony lub jony. Koszt budowy nowego akceleratora ma wynieść 1,7–2,8 miliardów dolarów i jest to jedyny akcelerator zderzeniowy, jakiego budowa jest rozważana w USA w ciągu kolejnych 50 lat. W EIC ma dać odpowiedź na pytanie, skąd bierze się spin protonu oraz wyjaśnić właściwości gluonów.
Obecnie bardzo słabo rozumiemy wewnętrzną strukturę protonów. Wiemy, że proton składa się z trzech kwarków połączonych oddziaływaniami silnymi. Jednak, jako że wkraczamy tutaj na pole fizyki kwantowej, pozostaje wiele niepewności. Wewnątrz protonu pojawiają się i znikają pary kwark-antykwark, ważną rolę odgrywają też gluony, łączące wszystko w całość. Jednak pozostaje jeszcze do wyjaśnienia wiele tajemnic. Na przykład trzy kwarki tworzące proton stanowią mniej niż 5% jego masy. Reszta masy pojawia się w jakiś sposób z energii wirtualnych kwarków i gluonów. Nie wiemy też, skąd się bierze spin protonu. Nie jest on prostą sumą spinów trzech kwarków. Znaczenie mają również gluony oraz orbitujące wokół siebie kwarki. Niewiele wiemy o samych gluonach. Zgodnie z niektórymi teoriami, łączą się one w pojedynczą falę kwantową. EIC znacznie bardziej nadaje się do tego typu badań, niż Wielki Zderzacz Hadronów, w którym protony zderzane są z protonami. W EIC wykorzystywane będą znacznie mniejsze od protonów elektrony, co da łatwiejsze do interpretacji wyniki.
W pracach nad EIC biorą udział naukowcy z 8 polskich instytucji: Akademia Górniczo-Hutnicza, Instytut Fizyki Jądrowej PAN, Narodowe Centrum Badań Jądrowych, Politechnika Krakowska, Politechnika Warszawska, Uniwersytet Jagielloński, Uniwersytet Rzeszowski i Uniwersytet Warszawski, które utworzyły Konsorcjum „The Polish Electron-Ion Collider Group". W NCBJ od dawna prowadzone są badania teoretyczne nad oddziaływaniami silnymi, a Polacy należą do światowej czołówki ekspertów w tej dziedzinie. Przed trzema laty fizycy z Zakładu Fizyki Teoretycznej NCBJ – prof. dr hab. Lech Szymanowski, dr hab. Jakub Wagner i dr Paweł Sznajder pomogli stworzyć tzw. żółty raport EIC, w którym opisano oczekiwania dotyczące akceleratora i wskazano, jak należy go budować, by osiągnąć zakładane cele naukowe.
« powrót do artykułu -
By KopalniaWiedzy.pl
CERN opublikował wstępny raport projektowy (Conceptual Design Report), w którym zarysowano plany nowego akceleratora zderzeniowego. Future Circular Collider (FCC) miałby być niemal 4-krotnie dłuższy niż Wielki Zderzacz Hadronów (LHC) i sześciokrotnie bardziej potężny. Urządzenie, w zależności od jego konfiguracji, miałoby kosztować od 9 do 21 miliardów euro.
Publikacja raportu odbyła się w ramach programu European Strategy Update for Particle Pysics. Przez dwa kolejne lata specjaliści będą zastanawiali się nad priorytetami w fizyce cząstek, a podjęte decyzje wpłyną na to, co w tej dziedzinie będzie się działo w Europie w drugiej połowie bieżącego stulecia. To olbrzymi krok, tak jakbyśmy planowali załogową misję nie na Marsa, a na Uran, mówi Gian Francesco Giudice, który stoi na czele wydziału fizyki teoretycznej CERN i jest przedstawicielem tej organizacji w Physics Preparatory Group.
Od czasu odkrycia bozonu Higgsa w 2012 roku LHC nie odkrył żadnej nowej cząstki. To pokazuje, że potrzebne jest urządzenie, które będzie pracowało z większymi energiami. Halina Abramowicz, fizyk z Tel Aviv University, która kieruje europejskim procesem opracowywania strategii rozwoju fizyki cząstek, nazwała propozycję CERN „bardzo ekscytującą”. Dodała, że projekt FCC będzie szczegółowo rozważany razem z innymi propozycjami. Następnie Rada CERN podejmie ostateczną decyzję, czy należy sfinansować FCC.
Jednak nie wszyscy uważają, że nowy zderzacz jest potrzebny. Nie ma żadnych podstaw, by sądzić, że przy energiach, jakie mógłby osiągnąć ten zderzacz, można będzie dokonać jakichś znaczących odkryć. Wszyscy to wiedzą, ale nich nie chce o tym mówić, stwierdza Sabine Hossenfelder, fizyk teoretyk z Frankfurckiego Instytutu Zaawansowanych Badań. Jej zdaniem pieniądze, które miałyby zostać wydane w FCC można z większym pożytkiem wydać na inne urządzenia, na przykład na umieszczenie na niewidocznej stronie Księżyca dużego radioteleskopu czy też zbudowanie na orbicie wykrywacza fal grawitacyjnych. Takie inwestycje z większym prawdopodobieństwem przyniosą znaczące odkrycia naukowe.
Jednak Michael Benedikt, fizyk, który stał na czele grupy opracowującej raport nt. FCC mówi, że warto wybudować nowy zderzacz niezależnie od spodziewanych korzyści naukowych, gdyż tego typu wielkie projekty łączą instytucje naukowe ponad granicami. Hossenfelder zauważa, że podobnie łączą je inne duże projekty naukowe.
Prace nad FCC rozpoczęły się w 2014 roku i zaangażowało się w nie ponad 1300 osób i instytucji. Rozważanych jest kilka konfiguracji, a większość z nich zakłada, że FCC powstanie obok LCH, a jego tunele będą miało 100 kilometrów długości. Sama budowa tunelu i powiązanej z nim infrastruktury naziemnej pochłoną około 5 miliardów euro. Kolejne 4 miliardy będzie kosztował akcelerator, w którym będą zderzanie elektrony z pozytonami. urządzenie miałoby pracować z energię do 365 gigaelektronowoltów. To mniejsza energia niż w LHC, jednak zderzenia lżejszych cząstek, jak elektron z pozytonem, dają znacznie bardziej szczegółowe dane niż zderzanie protonów, jakie zachodzi w LHC, zatem w FCC można by bardziej szczegółowo zbadać np. bozon Higgsa. FCC miałby zostać uruchomiony około roku 2040.
Warto tutaj na chwilę się zatrzymać i przypomnieć opisywany przez nas projekt International Linear Collider. Przed ponad pięciu laty świat obiegła wiadomość o złożeniu szczegółowego raportu technicznego 31-kilometrowego liniowego zderzacza elektronów i pozytonów. Raport taki oznaczał, że można rozpocząć budowę ILC. Urządzenie to, dzięki swojej odmiennej od LHC architekturze, ma pracować – podobnie jak FCC – z elektronami i pozytonami i ma dostarczać bardziej szczegółowych danych niż LHC. W projekcie ILC biorą udział rządy wielu krajów, a najbardziej zainteresowana jego budową była Japonia, skłonna wyłożyć nawet 50% jego kosztów. Jednak budowa ILC dotychczas nie ruszyła. Brak kolejnych odkryć w LHC spowodował, że szanse na budowę ILC znacznie zmalały. Rząd Japonii ma 7 marca zdecydować, czy chce u siebie ILC.
Inny scenariusz budowy FCC zakłada wydatkowanie 15 miliardów euro i wybudowanie w 100-kilometrowym tunelu zderzacza hadronów (kolizje proton–proton) pracującego z energią dochodzącą do 100 TeV, czyli wielokrotnie wyższą niż 16 TeV uzyskiwane w LHC. Jednak bardziej prawdopodobnym scenariuszem jest zbudowanie najpierw zderzacza elektronów i pozytonów, a pod koniec lat 50. bieżżcego wieku rozbudowanie go do zderzacza hadronów. Scenariusz taki jest bardziej prawdopodobny z tego względu, że skonstruowanie 100-teraelektronowoltowego zderzacza hadronów wymaga znacznie więcej badań. Gdybyśmy dysponowali 100-kilometrowym tunelem, to już moglibyśmy rozpocząć budowę zderzacza elektronów i pozytonów, gdyż dysponujemy odpowiednią technologią. Stworzenie magnesów dla 100-teraelektronowego zderzacza wymaga jeszcze wielu prac badawczo-rozwojowych, mówi Guidice.
Trzeba w tym miejscu wspomnieć, że podobny projekt prowadzą też Chiny. Państwo Środka również chce zbudować wielki zderzacz. O ile jednak w FCC miałyby zostać wykorzystane magnesy ze stopu Nb3Tn, to Chińczycy pracują nad bardziej zaawansowanymi, ale mniej sprawdzonymi, nadprzewodnikami bazującymi na żelazie. Ich zaletą jest fakt, że mogą pracować w wyższych temperaturach. Jeśli pracowałyby przy 20 kelwinach, to można osiągnąć olbrzymie oszczędności, mówi Wang Yifang, dyrektor chińskiego Instytutu Fizyki Wysokich Energii. Także i Chińczycy uważają, że najpierw powinien powstać zderzacz elektronów i pozytonów, a następnie należy go rozbudować do zderzacza hadronów.
Jako, że oba urządzenia miałyby bardzo podobne możliwości, powstaje pytanie, czy na świecie są potrzebne dwa takie same wielkie zderzacze.
« powrót do artykułu -
By KopalniaWiedzy.pl
Labradory, najpopularniejsza na świecie rasa psów domowych, zapadają często na chorobę zwaną upadkiem wywołanym przez wysiłek. Badacze z Uniwersytetu Minnesota ustalili, że przyczyną choroby jest wada genetyczna. Jest to jedna z pierwszych chorób genetycznych tak dokładnie zidentyfikowanych u zwierząt domowych.
Upadek wywołany przez wysiłek (ang. exercise-induced collapse - EIC) to choroba dotykająca aż 3-5% wszystkich hodowanych na świecie labradorów. Schorzenie to, jak sama nazwa wskazuje, polega na utracie kontroli w kończynach (głównie tylnych) po intensywnym wysiłku. W skrajnych przypadkach dochodzi nawet do śmierci zwierzęcia. Ze względu na popularność labradorów oraz częstotliwość występowania schorzenia, badacze z Uniwersytetu Minnesota postanowili przeprowadzić badania w poszukiwaniu jego przyczyn.
Wcześniejsze badania wykluczyły szereg potencjalnych powodów, dla których zwierzęta mogłyby zapadać na EIC. Wcześniej uważano, że przyczyną choroby mogą być takie zaburzenia, jak: niedorozwój tarczycy, przegrzanie organizmu, hipoglikemia (obniżona zawartość glukozy we krwi) czy komplikacje endokrynologiczne. Odrzucono także hipotezę o możliwym udziale zaburzeń funkcji serca i komórek mięśni kończyn. W związku z obserwacjami sugerującymi dziedziczność dolegliwości, badacze postanowili sprawdzić, czy rozwój szkodliwych objawów rzeczywiście jest związany z genami.
Ostatecznie naukowcy zidentyfikowali gen, którego mutacja jest wyraźnie związana z powstawaniem objawów schorzenia. Koduje on białko zwane dynaminą 1, której zdrowy wariant reguluje proces przekaźnictwa sygnałowego pomiędzy neuronami. Jego zmutowana forma wykazuje niższą aktywność biologiczną. Sprawia to, że podczas intensywnego wysiłku komórki nerwowe "nie nadążają" z przekazywaniem sygnałów stymulujących pracę mięśni, co powoduje nagłą utratę zdolności np. do dalszego biegu. Dotyczy to jednak tylko tych zwierząt, u których wadliwe są obie kopie tego genu. Psy, u których zmutowana jest tylko jedna kopia, są "cichymi nosicielami" - nie prezentują jakichkolwiek objawów, lecz ich potomstwo może być chore, jeżeli drugi rodzic także będzie nosicielem.
Badacze z Uniwersytetu Minnesota opracowali test genetyczny pozwalający na wykrycie predyspozycji do rozwoju EIC. W zależności od jego wyniku możliwe będzie np. zapobieganie rozrodowi z udziałem "cichych nosicieli" lub zmniejszenie intensywności zabaw z chorym zwierzęciem, co powinno pozwolic na uniknięcie przykrych symptomów.
Odkryta mutacja jest niezwykle częsta - dotyka aż 30% labradorów, a także psy innych ras, m.in. chesapeake. Biorący udział w badaniach dr James Mickelson podkreśla, że zwierzęta-nosiciele mogą okazać się interesującym modelem pozwalającym na zrozumienie zasad rządzących przekaźnictwem sygnałów sterujących pracą mięśni. Labradory są bowiem pierwszymi ssakami, u których zaobserwowano zmutowaną formę dynaminy 1.
-
-
Recently Browsing 0 members
No registered users viewing this page.