Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Nowy materiał porusza się w reakcji na światło

Recommended Posts

Na Tufts University stworzono magnetyczne kompozyty elastomerowe, które poruszają się w różny sposób w odpowiedzi na światło. Z takich materiałów można by produkować wiele różnych urządzeń, od prostych silników i zaworów po ogniwa fotowoltaiczne samodzielnie kierujące się w stronę światła słonecznego.

Znamy wiele naturalnych przypadków reakcji na światło. Wystarczy przypomnieć sobie kwiaty czy liście zwracające się w stronę słońca. Materiały, które zostały wykorzystane przez naukowców z Tufts wykorzystują temperaturę Curie, czyli granicę temperatury, przy której ferromagnetyk zmienia swoje właściwości. Zmiana temperatury powoduje utratę i odzyskanie właściwości magnetycznych. Biopolimery i elastomery wzbogacone ferromagnetykiem CrO2 po wystawieniu ich na działanie promienia lasera czy promieni słonecznych ogrzewają się, tracą właściwości magnetyczne, a gdy się schłodzą, odzyskują te właściwości. Materiały takie w odpowiedzi na obecność pola magnetycznego w zależności od kształtu, mogą wykonywać proste ruchy, jak zginanie się, zwijanie czy zwiększanie swojej powierzchni. Możemy połączyć te proste ruchy w bardziej złożone, jak pełzanie, chodzenie czy pływanie. A wszystko można kontrolować bezprzewodowo, za pomocą światła, mówi profesor Fiorenzo Omenetto.

Zespół Omenetto zaprezentował działanie wspomnianych materiałów tworząc elastyczne chwytaki, które w odpowiedzi na światło łapały i puszczały przedmioty. Jedną z zalet takich materiałów jest fakt, że możemy selektywnie aktywować fragment ich struktury poprzez skoncentrowanie na nich światła, mówi jedna z autorek badań, Meng Li. I w przeciwieństwie do innych materiałów pobudzanych światłem, które bazują na ciekłych kryształach, nasze materiały mogą poruszać się od lub do źródła światła. Wszystko to pozwala na budowę zarówno dużych, jak i małych obiektów wykonujących złożone, skoordynowane ruchy, dodaje uczona.

Naukowcy stworzyli prosty mechanizm, który nazwali „silnikiem Curie”. Materiał w kształcie okręgu został zamocowany na osi i umieszczony w pobliżu stałego magnesu. gdy na fragment okręgu padło światło lasera, utracił on właściwości magnetyczne, doszło do zaburzenia równowagi sił i okrąg się obrócił. Wówczas oświetlony dotychczas fragment znalazł się w cieniu, odzyskał właściwości magnetyczne, a utracił je fragment obok, który znalazł się w promieniu lasera. W ten sposób prosty silnik ciągle się obracał.

Dobierając odpowiednio kształt materiału, właściwości światła i pola magnetycznego, możemy teoretycznie uzyskać bardziej złożone i precyzyjne ruchu, jak zwijanie i rozwijanie, przełączanie zaworów w mikrokanalikach z płynami, możemy napędzać silniki w skali nano i wiele innych rzeczy, mówi Omenetto.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Badacze z Wydziału Fizyki Uniwersytetu Warszawskiego, ETH w Zurychu i Uniwersytetu w Cambridge zademonstrowali aktywne mikrocząstki poruszające się w płynie pod wpływem zewnętrznego oświetlenia, których kierunek ruchu zależy od długości fali padającego światła. Wyniki badań opublikowano w prestiżowym czasopiśmie naukowym Nature Communications.
      Materia aktywna to układy, których elementy mogą samoistnie poruszać się, czerpiąc energię ze swojego otoczenia i przekształcając ją w energię kinetyczną. Badania nad nimi są obecnie bardzo dynamiczną dziedziną fizyki. Obejmują one wiele skal czasowych i przestrzennych, m.in. zachowania ptaków w stadach (np. szpaków tworzących na wieczornym niebie dynamicznie ewoluujące wzory) czy ryb w ławicach (jako forma ochrony przed drapieżnikami), ale również bakterii w biofilmach i innych pływających mikroorganizmów w środowisku wodnym. Przedmiotem tej dziedziny są zarówno badania indywidualnych elementów składowych i zrozumienie mechanizmów konwersji energii, szczegółów oddziaływania i sprzężenia z otoczeniem, tak ważnych np. dla przeżycia mikroorganizmów, jak i prace nad efektami kolektywnymi i emergencją nowych zjawisk w dużych populacjach. Jedne i drugie mogą być z powodzeniem opisywane na różnych poziomach dokładności, począwszy od minimalistycznych modeli gruboziarnistych, a skończywszy na wyrafinowanych symulacjach numerycznych.
      Bakterie, algi, plemniki, orzęski i inne jednokomórkowe organizmy stanowią ważną grupę tzw. aktywnych pływaków. Zrozumienie fizycznych podstaw ich dynamiki jest często trudne ze względu na różnorodność, złożoność biologiczną i dużą wrażliwość na warunki otoczenia. Wodny mikroświat rządzi się jednak uniwersalnymi prawami fizyki cieczy, które nakładają ograniczenia na wszystkie organizmy. Ze względu na małe rozmiary – rzędu mikrometrów – i prędkości nieprzekraczające typowo kilkudziesięciu rozmiarów komórki na sekundę, przepływ płynu wokół nich jest zdominowany przez efekty lepkościowe. Oznacza to, że strategie pływania, które sprawdzają się dla rekinów czy pływaków olimpijskich, kompletnie zawodzą dla mikroskopijnych zawodników. Pływanie w skali makro opiera się bowiem na efektach bezwładności i poruszaniu się przez gwałtowny odrzut wody w przeciwnym kierunku. W mikroskali efekty te są pomijalne, a woda zachowuje się jak bardzo lepki płyn, np. miód. Spróbujmy wyobrazić sobie pływanie kraulem w basenie pełnym miodu – spodziewamy się, że będzie to bardzo wycieńczające i mało efektywne. Dlatego mikroorganizmy wykształciły inne strategie pływania, oparte na wykorzystaniu lepkości. Bakterie mają często helikalne wici, którymi "wkręcają" się w płyn niczym korkociągi. Okazuje się, że w lepkim świecie strategia ta pozwala na efektywne poruszanie się komórek. Większe mikroorganizmy, takie jak orzęski (wśród nich znany powszechnie ze szkolnej biologii pantofelek), pokryte są tysiącami krótkich rzęsek. Poruszają one nimi w skoordynowany sposób, przypominający meksykańską falę na stadionie. Mechanizm ten pozwala na transport płynu wzdłuż powierzchni komórki, a w efekcie na ruch komórki w przeciwną stronę do kierunku fal rzęsek na powierzchni.
      Zrozumienie tych mechanizmów zainspirowało rozwój syntetycznych mikropływaków. Perspektywa wytwarzania mikrorobotów w laboratorium od dziesięcioleci rozbudza wyobraźnię badaczy ze względu na możliwe zastosowania diagnostyczne, medyczne i przemysłowe, takie jak np. precyzyjny transport leków w ciele pacjenta. Z tego punktu widzenia szczególnie ważna jest nie tylko możliwość produkcji takich pływaków, ale również kontrola kierunku ich ruchu.
      Opisany powyżej mechanizm transportu płynu przez orzęski (stosowany również w organizmach wielokomórkowych, np. ludzkich – przez rzęski w płucach albo w drogach rodnych do transportu śluzu), zainspirował opracowanie całej gamy pływaków opartych na zjawisku dyfuzjoforezy. Wyjaśnimy to na przykładzie doświadczenia z tzw. cząstką Janusa (nazwa nawiązuje do rzymskiego boga o dwóch twarzach) – mikroskopijną kulą o jednej półkuli pokrytej złotem, a drugiej pokrytej platyną. Po umieszczeniu jej w roztworze wody utlenionej (H2O2) platyna katalizuje rozkład płynu do wody i tlenu. W efekcie stężenie produktów reakcji po stronie platynowej półkuli jest większe, a zatem pojawia się przepływ płynu wzdłuż powierzchni, zmierzający do wyrównania stężeń. Podobnie jak w przypadku mikroorganizmów, przepływ względem powierzchni wywołuje ruch samej cząstki w przeciwnym kierunku. Mamy zatem do czynienia z układem, który lokalnie przekształca energię chemiczną otoczenia w energię kinetyczną swojego ruchu. Mechanizm opisany powyżej jest uniwersalny – niezbędnym składnikiem jest niejednorodne stężenie produktów reakcji chemicznej na powierzchni. Co więcej, możemy zastąpić go np. niejednorodnym rozkładem temperatury albo rozkładem potencjału elektrostatycznego. Wszystkie te mechanizmy zostały doświadczalnie potwierdzone w układach mikroskopowych. Warto podkreślić, że rozmiary i prędkości takich pływaków są porównywalne z układami biologicznymi, które stanowiły inspirację. A zatem poprzez badania sztucznej materii aktywnej zyskujemy dodatkowe okno, przez które możemy zajrzeć do pływającego mikroświata.
      W toku rozwoju badań syntetycznej materii aktywnej zaproponowano wiele lokalnych mechanizmów napędowych. Wyzwaniem pozostaje jednak kontrola ruchu pływaka, pozwalająca "zaprogramować" go tak, by dotarł w określone miejsce i np. dostarczył lek do wybranej części ciała pacjenta. Alternatywnie mógłby on być sterowany przez zewnętrznego operatora za pomocą określonych bodźców. Bodźcem takim może być np. promieniowanie elektromagnetyczne, pole magnetyczne, elektryczne, nierównomierny rozkład temperatur albo sygnał akustyczny.
      O jednej z propozycji w tym kierunku traktuje nowa praca badaczy z Wydziału Fizyki UW, ETH w Zurychu i Uniwersytetu w Cambridge, która ukazała się w czasopiśmie Nature Communications. Zaprezentowano w niej zmodyfikowane mikrocząstki Janusa, poruszające się w płynie pod wpływem zewnętrznego oświetlenia, których kierunek ruchu zależy od długości fali padającego światła. Cząstki o średnicy 3,5 mikrona zostały wykonane z anatazu – jednej z odmian polimorficznych dwutlenku tytanu – a jedna ich półkula została pokryta złotem. Oświetlone zielonym światłem poruszają się one w kierunku wyznaczonym przez "złotą czapkę", zaś oświetlone światłem ultrafioletowym – w przeciwnym. Cząstki zostały zsyntetyzowane na ETH w Zurychu przez dr. Hanumanthę Rao Vutukuriego i prof. Jana Vermanta.
      Przez zmianę długości fali światła aktywujemy różne mechanizmy katalityczne na powierzchni cząstek, dzięki czemu możemy bardzo szybko i w kontrolowany sposób sterować ich ruchem – mówi dr Maciej Lisicki z Wydziału Fizyki UW. Ponadto widzimy bardzo ciekawą dynamikę kolektywną: cząstki tego typu potrafią wzajemnie się przyciągać lub odpychać, w zależności od wzajemnej orientacji i koloru oświetlenia. Obserwujemy w ten sposób gwałtowne procesy fuzji i rozszczepienia, których dynamiką możemy sterować.
      Opis ruchu w takich układach wymaga uwzględnienia zarówno oddziaływań chemicznych cząstek poprzez niejednorodne pole stężenia reagentów, które powstają na ich powierzchniach, jak również poprzez przepływ płynu wywołany ich obecnością. Model teoretyczny, pozwalający opisać dynamikę nowego typu cząstek aktywnych, został stworzony przez dr. Macieja Lisickiego z UW i prof. Erica Laugę z Uniwersytetu w Cambridge.
      Przy mikrometrowych rozmiarach cząstek ciecz wokół nich zachowuje się jak bardzo lepki płyn – mówi Maciej Lisicki. Ich oddziaływania hydrodynamiczne mają przez to bardzo daleki zasięg, a więc ruch każdej cząstki jest odczuwany przez wszystkie inne.
      Badacze, którzy od dawna zajmują się zastosowaniami zjawiska dyfuzjoforezy do transportu płynu w mikroskali i tworzenia syntetycznych pływaków, uważają, że nowy, odwracalny i kontrolowany, mechanizm poruszania się cząstek Janusa jest krokiem na drodze do konstrukcji bardziej złożonych mikrorobotów, które będą w stanie transportować ładunki w skali komórkowej. Może on również zostać wykorzystany do kontroli dynamiki kolektywnej w mikroskali. Lokalne oświetlenie może bowiem wywoływać ruch cząstek aktywnych w pożądanym kierunku. W zawiesinach wieloskładnikowych z dodatkiem cząstek aktywnych może to być efektywny mechanizm mieszania, które w mikroskali jest istotnym wyzwaniem technicznym.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przez 20 lat naukowcy badali, jak światło obraca się wokół osi podłużnej równoległej do kierunku jego ruchu. Powstaje jednak pytanie, czy może się ono poruszać w inny sposób. Teraz, dzięki urlopowi naukowemu dwóch akademików dowiedzieliśmy się, że światło może obracać się wzdłuż osi poprzecznej, prostopadłej do kierunku jego ruchu. Może więc przypominać przemieszczającą się trąbę powietrzną.
      Andy Chong i Qiwen Zhan z University of Dayton postanowili z czystej ciekawości zbadać kwestię ruchu światła. Wzięliśmy urlop naukowy, by w całości skupić się na tych badaniach. Dzięki temu dokonaliśmy naszego odkrycia, mówi Chong.
      Uczeni przyznają, że nie wiedzieli, czego szukają i co mogą znaleźć. To była czysta ciekawość. Czy możemy zrobić to, albo zmusić światło do zachowywania się tak, dodaje profesor Zhan, który specjalizuje się w elektrooptyce oraz fotonice i jest dyrektorem UD-Fraunhofer Joint Research Center.
      Gdy już stwierdziliśmy, że potrafimy to zrobić [wymusić obrót światła wzdłuż osi poprzecznej – red.], powstało pytanie co dalej, dodają uczeni.
      Na razie nikt nie wie co dalej, a odpowiedź na to pytanie z pewnością będzie przedmiotem dalszych badań zarówno uczonych z Dayton, jak i innych grup naukowych. Trudno w tej chwili stwierdzić, w jaki sposób można nowe zjawisko wykorzystać. Być może posłuży ono np. do opracowania technologii szybszego i bezpieczniejszego przesyłania danych. Obecnie tego nie wiemy. Ale jedynym ograniczeniem jest wyobraźnia badaczy, dodaje Zhan. Chong i Zhan już wiedzą, co będą badali w następnej kolejności. Najbardziej interesuje ich interakcja światła z różnymi materiałami. Chcemy lepiej zrozumieć, jak ten nowy stan światła w chodzi w interakcje z materiałami w czasie i przestrzeni, stwierdza Chong.
      Ze szczegółami odkrycia można zapoznać się na łamach Nature Photonics.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wyobraźmy sobie całkowicie elastycznego robota, który nie zawiera żadnych obwodów i jest napędzany światłem słonecznym, mówi Amos Meeks z Uniwersytetu Harvarda (SEAS) i główny autor najnowszych badań. Badań, których autorzy opracowali nowatorską całkowicie optyczną platformę obliczeniową. Taką, w której do obliczeń wykorzystuje się tylko i wyłącznie światło.
      W większości współczesnych systemów obliczeniowych wykorzystuje się twarde materiały, takie jak metalowe kable, półprzewodniki i fotodiody łączące elektronikę i światło, stwierdza Meeks. U podstaw wyłącznie optycznej platformy obliczeniowej leży chęć pozbycia się tych elementów i kontrolowanie światła za pomocą światła, dodaje.
      Tego typu platformy wykorzystują materiały nieliniowe, które zmieniają indeks refrakcyjny w reakcji na intensywność światła. Gdy światło przechodzi przez taki materiał, zwiększa się jego indeks refrakcyjny i w materiale pojawia się, generowany światłem, światłowód. Problem jednak w tym, że obecnie większość materiałów nieliniowych wymaga albo użycia potężnych laserów, albo też w wyniku oddziaływania światła na stałe zmieniają się ich właściwości.
      Naukowcy z Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) we współpracy z uczonymi z McMaster University oraz University of Pittsburgh opracowali nowatorski materiał, który w reakcji na światło lasera o niskiej mocy zmiania swój indeks refrakcyjny zmniejszając i zwiększając swoje rozmiary, a zmiany te są odwracalne.
      Nowy materiał to hydrożel zbudowany z sieci polimerowej nasączonej wodą oraz z niewielkiej liczby spiropyranów, molekuł reagujących na światło.
      Gdy hydrożel zostaje oświetlony, nieco się kurczy i zmienia się jego indeks refrakcyjny. Po wyłączeniu światła żel powraca do oryginalnego kształtu. Gdy zaś hydrożel zostanie oświetlony przez wiele źródeł światła, wchodzą one w interakcje i wpływają na siebie. Na przykład promień A może blokować promień B, promień B może blokować promień A, oba mogą blokować się nawzajem lub oba mogą przez siebie przechodzić. Powstaje w ten sposób bramka logiczna.
      Mimo, że to oddzielne promienie, mogą na siebie wpływać. Możemy wyobrazić sobie, że w przyszłości taki sposób reakcji na światło może zostać wykorzystany do wykonywania obliczeń, mówi Kalaichelvi Saravanamuttu z McMaster University.
      Nauki materiałowe się zmieniają. Samoregulujące, adaptacyjne materiały zdolne do optymalizowania swoich właściwości w reakcji na otoczenie zastępują statyczne, nieefektywne energetycznie i zewnętrznie regulowane materiały. Zaprezentowany przez nas materiał, który kontroluje światło o niezwykle niskiej intensywności to kolejny pokaz nadchodzącej rewolucji technologicznej, dodaje profesor Joanna Aizenberg z SEAS.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      64 proc. Polaków podejmuje aktywność fizyczną przynajmniej raz w miesiącu. Skłaniają ich do tego przede wszystkim korzyści zdrowotne ruchu - taką motywację ma 43 proc. aktywnych fizycznie ankietowanych - wynika z badania MultiSport Index 2019, przeprowadzonego przez Kantar.
      W porównaniu z wynikami zeszłorocznej edycji badania widoczny jest wzrost – o 2 punkty procentowe – odsetka Polaków, którzy deklarują, że są aktywni fizycznie. W 2019 r. 64 proc. (62 proc. w 2018 r.) badanych osób po 15. roku życia oceniło, że przynajmniej raz w miesiącu podejmuje wysiłek fizyczny, uwzględniający czynności rekreacyjne, takie jak spacery czy jazda na rowerze. Wciąż jednak tylko połowa z tej grupy spełnia zalecenia Światowej Organizacji Zdrowia (WHO), ćwicząc przez co najmniej 150 minut w tygodniu.
      Z badania wynika też, że aż 36 proc. Polaków nie podejmuje żadnej aktywności fizycznej. W tej grupie aż 53 proc. stanowią osoby po 55. roku życia. Autorzy raportu, opracowanego na podstawie wyników badania, za pozytywny trend uważają to, że najczęstszą przyczyną podejmowania aktywności fizycznej przez Polaków jest zdrowie – taką odpowiedź wskazało aż 43 proc. badanych.
      WHO zaleca, żeby – dla uzyskania korzyści zdrowotnych - osoby dorosłe, tj. od 18. do 64. roku życia, podejmowały w tygodniu co najmniej 150 minut umiarkowanej lub 75 minut intensywnej aerobowej aktywności fizycznej.
      Do umiarkowanej aktywności fizycznej możemy zaliczyć m.in. jazdę na rowerze, z której korzysta 31 proc. aktywnych mieszkańców Polski, czy spacery wybierane przez 24 proc. - skomentował cytowany w informacji prasowej przysłanej PAP dr Janusz Dobosz z Narodowego Centrum Badania Kondycji Fizycznej AWF Warszawa. Jak dodał specjalista, zalecenie dotyczące minimalnej aktywności fizycznej – tj. 2,5 godziny tygodniowo w umiarkowanym ruchu – wypełnia co najwyżej 33 proc. spośród aktywnych Polaków.
      Tymczasem ruch jest jedną z najprostszych i łatwo dostępnych form profilaktyki chorób cywilizacyjnych, a także skutecznym lekiem na wiele z nich. Regularna i zgodna z zaleceniami aktywność fizyczna jest nie tylko metodą profilaktyki chorób cywilizacyjnych, ale także jednym z podstawowych sposobów leczenia zalecanych m.in. w celu obniżenia ciśnienia krwi i poprawy funkcji układu krążenia, zarówno dla ogółu społeczeństwa, jak i osób zmagających się ze rozpoznanym nadciśnieniem tętniczym - przypomniał specjalista medycyny sportowej dr hab. n. med. Ernest Kuchar z Warszawskiego Uniwersytetu Medycznego. Liczbę osób z nadciśnieniem tętniczym w Polsce szacuje się na ponad 10 mln.
      WHO ocenia, że brak ruchu jest czwartą przyczyną umieralności na świecie - za nadciśnieniem tętniczym, paleniem tytoniu oraz podwyższonym stężeniem glukozy we krwi - i odpowiada za 6 proc. zgonów. Z badań wynika, że godzina siedzenia skraca życie o prawie 21 minut. Jest to o 10 minut więcej, niż jeden wypalony papieros. Można zatem wyliczyć, że pracownik, który przy biurku spędza osiem godzin dziennie, w ciągu 40 lat pracy skraca swoje życie średnio o trzy lata.
      Zgodnie z szacunkami niedobór aktywności fizycznej może być współodpowiedzialny za 27 proc. zachorowań na cukrzycę i około 30 proc. przypadków choroby wieńcowej; odpowiada również za 21-25 proc. przypadków raka piersi czy jelita grubego.
      Regularny ruch może także opóźnić wystąpienie chorób związanych z wiekiem, takich jak pogorszenie funkcji poznawczych, otępienie starcze, czy choroba Alzheimera. U seniorów może złagodzić przebieg tych schorzeń.
      Regularny ruch wpływa zarówno na zdrowie, jak i na jakość życia seniorów, pozwalając im dłużej zachować samodzielność, sprawność fizyczną i umysłową. [...] Seniorzy korzystający z ruchu mogą poprawić m.in. koordynację, motorykę ciała i pracę mózgu - podkreślił dr Kuchar.
      Tymczasem w Polsce aktywni fizycznie są przede wszystkim reprezentanci młodego pokolenia od 15. Do 24. roku życia (80 proc.) i osoby uczące się (90 proc.). Ogólnie Polska z odsetkiem 64 proc. osób aktywnych fizycznie wciąż pozostaje poniżej europejskiej średniej. Według Eurobarometru 2017 średnia UE wynosi 71 proc. Wśród państw UE Polska zajmuje pod względem aktywności fizycznej szóstą lokatę od końca, wyprzedzając jedynie Portugalię, Maltę, Włochy, Rumunię i Bułgarię.
      Badanie MultiSport Index zostało przeprowadzone w styczniu 2019 r. na zlecenie firmy Benefit Systems w reprezentatywnej grupie - 1858 mieszkańców Polski.

      « powrót do artykułu
×
×
  • Create New...