Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Wzajemne oddziaływania a nie Dziewiąta Planeta wyjaśnieniem niezwykłych orbit?

Rekomendowane odpowiedzi

Oddziaływania pomiędzy obiektami na granicy Układu Słonecznego, a nie obecność Dziewiątej Planety, mogą wyjaśniać tajemnicze orbity niektórych obiektów, uważają autorzy najnowszych badań.

Przed dwoma laty profesorowie Batygin i Brown przedstawili hipotezę, zgodnie z którą niezwykłe orbity kilkunastu obiektów z Pasa Kuipera, w tym orbitę Sedny, wyjaśnia obecność w Układzie Słonecznym nieznanej dotychczas Dziewiątej Planety. Teraz profesor Ann-Marie Madigan i jej zespół z Colorado University w Boulder twierdzą, że te niezwykłe orbity to skutek oddziaływań pomiędzy samymi obiektami.

Tam jest tyle różnych obiektów. Jak działa ich ich wspólna grawitacja? Możemy rozwiązać wiele problemów biorąc ją pod uwagę, mówi Madigan.

Jednym z tajemniczych obiektów Pasa Kuipera jest Sedna. To nieco mniejsza od Plutona planeta karłowata, której czas obiegu wokół Słońca wynosi ponad 11 000 lat. Orbita Sedny i jej podobnych obiektów przebiega tak, że nigdy nie znajdują się one w pobliżu Neptuna. Wszystkie inne obiekty Pasa Kuipera zbliżają się do tej planety.

Madigan i jej zespół chcieli początkowo zbadań dynamikę tych obiektów. Jacob Fleisig, którego zadaniem było stworzenie modelu komuputerowego, przyszedł do Madigan i poinformował ją, że zauważył coś interesującego. Z wyliczeń Fleisiga wynikało, że wspomniane obiekty okrążają Słońce na podobieństwo wskazówek zegara. Część z nich porusza się szybciej i w tandemie, zaś większe obiekty, jak Sedna, wędrują wolniej. Czasami obiekty te spotykają się. Można zauważyć nagromadzenie tych obiektów po jednej stronie Słońca. Ich orbity łączą się, a interakcje pomiędzy obiektami powodują, że zmieniają one orbitę na bardziej kołową, stwierdził młody naukowiec.

Innymi słowy, orbity wspominanych obiektów mogą zmieniać się z eliptycznych na kołowe wyłącznie wskutek oddziaływań pomiędzy samymi obiektami. Do ich wyjaśnienia nie jest potrzebne istnienie Dziewiątej Planety.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Astrofizyk Stephen Kane z Uniwersytetu Kalifornijskiego w Riverside przeprowadził symulacje komputerowe, w których uzupełnił dwie rzucające się w oczy luki w Układzie Słonecznym. Pierwsza z nich to brak super-Ziemi, druga zaś to jej lokalizacja. Z symulacji wynika, że ich uzupełnienie zakończyło by historię życia na Ziemi.
      Największą planetą skalistą Układu Słonecznego jest Ziemia. Najmniejszym gazowym olbrzymem jest zaś Neptun o 4-krotnie większej średnicy i 17-krotnie większej masie. Nie ma żadnej planety o pośrednich cechach. W innych układach znajduje się wiele planet o wielkości i masie pomiędzy Ziemią a Neptunem. Nazywamy je super-Ziemiami, wyjaśnia Kane. Druga z luk to odległość od Słońca. Merkury położony jest o 0,4 jednostki astronomicznej (j.a.) od naszej gwiazdy, Wenus dzieli od niej 0,7 j.a., Ziemię – 1 j.a., a Marsa – 1,5 j.a. Kolejna planeta, Jowisz, znajduje się już 5,2 j.a. od Słońca. Kane w swoich symulacjach postanowił wypełnić tę lukę. Symulował więc istnienie tam planety o różnej masie i sprawdzał, jak jej obecność wpływała na inne planety.
      Wyniki symulacji – w ramach których Kane badał skutki obecności planety o masie 1-10 mas Ziemi na orbicie odległej od Słońca o 2-4 j.a. – opublikowane na łamach Planetary Science Journal, były katastrofalne dla Układu Słonecznego. Taka fikcyjna planeta wpłynęłaby na orbitę Jowisza, co zdestabilizowałby cały układ Słoneczny. Jowisz, największa z planet, ma masę 318-krotnie większa od Ziemi. Jego grawitacja wywiera więc duży wpływ na otoczenie. Jeśli super-Ziemia lub inny masywny obiekt zaburzyłby orbitę Jowisza, doszłoby do znacznych zmian w całym naszym otoczeniu. W zależności od masy i dokładnej lokalizacji super-Ziemi jej obecność – poprzez wpływ na Jowisza – mogłaby doprowadzić do wyrzucenia z Układu Słonecznego Merkurego, Wenus i Ziemi. Podobny los mógłby spotkać Urana i Neptuna. Jeśli zaś super-Ziemia miałaby znacznie mniejszą masę niż ta prowadząca do katastrofy i znajdowałaby się dokładnie po środku pomiędzy Marsem a Jowiszem, układ taki mógłby być stabilny. Jednak każde odchylenie w jedną lub drugą stronę skończyłoby się katastrofą.
      Badania Kane'a to nie tylko ciekawostka. Pokazują, jak delikatna jest równowaga w Układzie Słonecznym. Ma też znaczenie dla poszukiwania układów planetarnych zdolnych do podtrzymania życia. Mimo że podobne do Jowisza, odległe od swoich gwiazd, gazowe olbrzymy znajdowane są w zaledwie 10% układów, to ich obecność może decydować o stabilności orbit planet skalistych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Niemal połowa gwiazd Drogi Mlecznej to obiekty samotne, jak Słońce. Druga połowa zaś to gwiazdy znajdujące się w układach podwójnych lub większych. W układach takich gwiazdy mogą znajdować się na niezwykle ciasnych orbitach. I właśnie taki, rekordowo ciasny układ, znaleźli właśnie astronomowie z MIT.
      Nowo odkryty system, ZTF J1813+4251, to układ kataklizmiczny o rekordowo krótkim czasie obiegu gwiazd wokół siebie. Gwiazdy okrążają się w ciągu zaledwie... 51 minut.
      Układy kataklizmiczne, zwane też zmiennymi kataklizmicznymi, składają się z gwiazdy ciągu głównego (podobne do Słońca) oraz z białego karła. Powstają one, gdy dwie gwiazdy zbliżą się do siebie na tyle, że biały karzeł zaczyna wchłaniać materię z gwiazdy mu towarzyszącej. W trakcie tego procesu dochodzi do pojawiania się olbrzymich zmiennych błysków światła. Astronomowie, obserwujący przed wiekami te rozbłyski, sądzili, że są one skutkiem jakiegoś kataklizmu. Stąd nazwa tych układów.
      W przypadku ZTF J1813+4251, w przeciwieństwie do innych podobnych systemów, udało się wielokrotnie zaobserwować przesłonięcie jednej gwiazdy przez drugą, co dało astronomom okazję do dokładnych pomiarów właściwości obu gwiazd. Dzięki temu mogli przeprowadzić symulacje obecnego wyglądu systemu oraz tego, jak będzie ewoluował przez najbliższych kilkaset milionów lat. Z symulacji wynika, że gwiazda ciągu głównego okrąża białego karła i traci na jego rzecz olbrzymie ilości wodoru. Z czasem zostanie obdarta z materii i pozostanie z niej głównie gęste bogate w hel jądro. Za około 70 milionów lat gwiazdy tak bardzo zbliżą się do siebie, że będą okrążały się w ciągu zaledwie 18 minut. Później zaczną się od siebie oddalać.
      Symulacje to potwierdzenie hipotez, które wysunięto przed laty. Mówiły one, że gwiazdy z układach kataklizmicznych wchodzą z czasem na ultrakrótkie orbity. Tutaj mamy do czynienia z rzadkim przypadkiem, gdy przyłapaliśmy jeden z takich systemów w momencie zmiany z akrecji wodoru na akrecję helu, mówi Kevin Burdge z MIT. Przewidywano, że obiekty takie będą wchodziły na ultrakrótkie orbity i od dawna zastanawiano się, czy będą one na tyle krótkie, by pojawiły się fale grawitacyjne.
      Nowy układ został odkryty przez naukowców z MIT, Harvard and Smithsonian Center for Astrophysics i innych instytucji w katalogu Zwicky Transient Facility (ZTF). Jest on tworzony w Palomar Observatory w Kalifornii. Umieszczony tam aparat fotograficzny przez lata wykonał ponad 1000 zdjęć każdej z ponad miliarda obserwowanych gwiazd, rejestrując w ten sposób zmiany ich jasności.
      Naukowcy przeanalizowali dane, szukając cech charakterystycznych systemów na ultrakrótkich orbitach, które mogłyby emitować olbrzymie rozbłyski światła oraz fale grawitacyjne. Stworzony przez Burdge'a algorytm wskazał na około milion gwiazd, które co mniej więcej godzinę prawdopodobnie emitowały rozbłyski. Następnie skupił się na rozbłyskach o szczególnych cechach. W ten sposób zauważył ZTF J1813+4251, układ, który znajduje się w odległości około 3000 lat świetlnych od Ziemi, w Gwiazdozbiorze Herkulesa.
      Burge i jego zespół rozpoczęli wówczas obserwacje za pomocą W.M. Keck Observatory na Hawajach i Gran Telescopio Canarias. Przekonali się, że znaleziony system daje wyjątkowo jasny sygnał. Dzięki temu możliwe były precyzyjne pomiary układu.
      ZTF J1813+4251 składa się prawdopodobnie z białego karła o rozmiarach 100-krotnie mniejszych niż Słońce i o połowie masy naszej gwiazdy. Towarzyszy mu gwiazda o masie i 1/10 rozmiarów Słońca. Obie gwiazdy okrążały się w ciągu 51 minut, ale coś tutaj nie pasowało.
      Ta druga gwiazda wyglądała jak Słońce, ale Słońce nie zmieści się na orbicie krótszej niż 8-godzinna, mówi Burdge. Wyjaśnieniem okazała się praca naukowa sprzed 30 lat autorstwa profesora MIT Saula Rappaporta. Przewidział on w niej, że układy o bardzo ciasnych orbitach mogą istnieć jako układy kataklizmiczne. Gdy biały karzeł pochłonie cały wodór z towarzyszącej mu gwiazdy podobne do Słońca, pozostaje gęste jądro z helu, które jest wystarczająco masywne, by martwa gwiazda znalazła się na ultrakrótkiej orbicie.
      ZTF J1813+4251 to układ kataklizmiczny, który znajduje się właśnie z momencie przejścia z gwiazdy wodorowej, w obiekt bogaty w hel. To szczególny układ. Mieliśmy olbrzymie szczęście, że zauważyliśmy system, który daje odpowiedź na ważne pytanie. To jedna z najpiękniejszych zmiennych kataklizmicznych, cieszy się Burdge.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gwiazdy mogą przechwytywać masywne planety wielkości Jowisza, wynika z modelu stworzonego przez naukowców z University of Sheffield. Mechanizm kradzieży wyjaśnia, skąd na orbitach gwiazd typu OB wzięły się odkryte w ubiegłym roku planety nazwane Bestiami (BEAST). Zgodnie bowiem z obecnie obowiązującymi teoriami, takie planety nie powinny istnieć.
      We wszechświecie istnieje wiele niezwykłych układów planetarnych. Z jednej strony mamy układy takie jak TRAPPIST-1, gdzie kilka niewielkich skalistych planet upakowanych jest na ciasnych orbitach wokół gwiazdy, z drugiej zaś znamy planety wielkości Jowisza, które krążą na orbitach odległych o setki jednostek astronomicznych od gwiazd. Wyjaśnienie formowania się takich układów planetarnych to poważne wyzwanie dla astronomii.
      W 2021 roku podczas projektu badawczego o nazwie B-star Exoplanet Abundance Study (BEAST) zauważono dwie planety wielkości Jowisza obiegające gwiazdy typu OB. Do tego typu należą gorące gwiazdy o masie co najmniej 2,4 razy większej od masy Słońca. Obecnie obowiązujące teorie mówią, że promieniowanie z gwiazd OB jest tak intensywne, że odparowują one otaczający je dysk akrecyjny, co uniemożliwia formowanie się planet. Tymczasem, jak wspomnieliśmy, znaleziono dwie planety wokół takich gwiazd. A jakby tego było mało jedna z nich znajduje się gigantycznej odległości 556 jednostek astronomicznych od gwiazdy. Do ponad 10-krotnie więcej niż odległość pomiędzy Plutonem a Słońcem.
      Richard Parker i Emma Daffern-Powell z University of Sheffield postanowili sprawdzić, skąd gwiazdy OB mogą mieć planety. Stworzyli model komputerowy, który miał zbadać hipotezę mówiącą, że gwiazdy OB rodzą się w miejscach dość dużego zagęszczenia gwiazd, a następnie bardzo szybko się stamtąd oddalają.
      Model wykazał, że w takim scenariuszu do przechwycenia planety przez gwiazdę OB może dochodzić 1 raz na 10 milionów lat. Ponadto, biorąc pod uwagę kształty i rozmiary orbit Bestii, gwiazdy OB z większym prawdopodobieństwem przejmą planety swobodne – takie, które zostały wyrzucone z orbity wokół gwiazdy macierzystej – niż planety znajdujące się na orbitach.
      Wykonane w Sheffield analizy wspierają więc hipotezę, że planety znajdujące na na orbitach odległych o ponad 100 j.a. nie krążą wokół gwiazd macierzystych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po trwającej miesiąc podróży Teleskop Kosmiczny Jamesa Webba (JWST) trafił właśnie na orbitę wokół punktu Lagrange'a L2. Przez pięć kolejnych miesięcy Webb będzie przygotowywany do pracy, a rozpoczęcie badań naukowych zaplanowano na czerwiec.
      Wcześniej opisywaliśmy budowę teleskopu i jego cele naukowe oraz dlaczego wybrano punkt L2 i dlaczego JWST będzie wokół niego krążył, a nie został umieszczony dokładnie w nim.
      Zwierciadła i instrumenty naukowe Webba jeszcze nie osiągnęły wymaganej stabilnej temperatury pracy. Muszą się jeszcze nieco chłodzić. A schładzać zaczęły się, i to bardzo szybko, gdy tylko teleskop rozwinął osłonę termiczną. Procesu tego nie pozostawiono jednak całkowicie naturze. Jest on ściśle kontrolowany poprzez umieszczenie w strategicznych miejscach teleskopu elektrycznie podgrzewanych pasków. Dzięki nim można było zarówno kontrolować równomierne kurczenie się całej struktury teleskopu, jak i upewnić się, że zabrana w Ziemi wilgoć odparuje i nie zamarznie na elementach optycznych czy czujnikach, co mogłoby negatywnie wpłynąć na prowadzone badania naukowe.
      Teraz, gdy Webb jest już w miejscu swojego przeznaczenia, centrum kontroli wykorzysta Fine Guidance Sensor do nakierowania teleskopu na jedną z jasnych gwiazd i sprawdzenie, czy obserwatorium jest w stanie wybrać taki cel, skupić się na nim i śledzić go w miarę, jak będzie podróżowało po swojej orbicie. Weryfikacja prawidłowej pracy zostanie przeprowadzona głównie za pomocą urządzenia NIRCam. Jednak, jako że zwierciadło główne teleskopu nie jest jeszcze odpowiednio ustawione, otrzymamy do 18 rozmazanych obrazów obserwowanej gwiazdy.
      Po potwierdzeniu, że Webb jest w stanie śledzić wybrany cel rozpocznie się żmudny kilkumiesięcznych proces ustawiania wszystkich 18 segmentów zwierciadła głównego tak, by całość działała jak jedno wielkie lustro. Poszczególne segmenty zwierciadła będą poruszały się z dokładnością liczoną w nanometrach, a cały proces zajmie trzy pełne miesiące.
      W międzyczasie zakończy się proces schładzania Webba i wszystkie urządzenia będą miały najniższą temperaturę możliwą do osiągnięcia w sposób pasywny. Osłona termiczna zapewni teleskopowi stabilną temperaturę pracy poniżej -223,15 stopni Celsjusza. Wówczas włączy się aktywny system chłodzenia, którego zadaniem jest zapewnienie optymalnej temperatury pracy jednemu z czterech instrumentów Webba, MIRI. Mid-Infrared Instrument to niezwykle czuła kamera i spektrograf działające w zakresie średniej podczerwieni (5–28 nm). Urządzenie jest tak czułe, że mogłoby dostrzec z Ziemi świeczkę zapaloną na jednym z księżyców Jowisza. By jednak pokazać pełnię swoich możliwości potrzebuje bardzo niskich temperatur. Dlatego też potrzebny był innowacyjny dwustopniowy system chłodzenia aktywnego, który zapewni MIRI temperaturę pracy wynoszącą -266,16 stopni Celsjusza. Od tej pory Webb będzie zdolny do uzyskania wysokiej jakości obrazów odległych gwiazd czy galaktyk.
      Piąty i szósty miesiąc od startu to czas kalibracji wszystkich czterech instrumentów naukowych i testowania różnych ich trybów pracy na reprezentatywnych celach w kosmosie. Sprawdzona zostanie też zdolność teleskopu do śledzenia „poruszających się” pobliskich obiektów, takich jak asteroidy, komety, planety czy księżyce w Układzie Słonecznym. Wkrótce potem NASA podzieli się wynikami swoich testów i pochwali pełnymi możliwościami teleskopu.
       


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzisiaj około godziny 20:00 czasu polskiego kontrola naziemna Teleskopu Webba wyda mu polecenie uruchomienia silników i wprowadzi JWST na orbitę wokół punku libracyjnego L2 (punkt Lagrange'a). Teleskop pozostanie w tym miejscu przez co najmniej 10 lat. Jednak już teraz wszystko wskazuje na to, że misję Webba będzie można wydłużyć.
      Obecnie Teleskop Kosmiczny Jamesa Webba (JWST) znajduje się w odległości mniej niż 6000 km od swojej docelowej orbity i porusza się w jej kierunku z prędkością ok. 200 metrów na sekundę. Najwyższa temperatura po jego gorącej stronie wynosi 55 stopni Celsjusza, a najniższa po stronie zimnej to -210 stopni.
      Punkt libracyjny (punkt Lagrange'a) to taki punkt w przestrzeni w układzie dwóch ciał powiązanych grawitacją, w którym trzecie ciało o pomijalnej masie może pozostawać w spoczynku względem obu ciał układu. Tutaj mówimy o układzie Słońce-Ziemia i o Teleskopie Webba, czyli trzecim ciele, tym o pomijalnej masie. W układzie takich trzech ciał występuje pięć punktów libracyjnych, oznaczonych od L1 do L5. Na linii Słońce-Ziemia znajdują się trzy z nich. L3 leży za Słońcem z punktu widzenia Ziemi, L1 znajduje się pomiędzy Słońcem a Ziemią, a L2 to miejsce za Ziemią z punktu widzenia Słońca. Zatem L2 był jedyny możliwym do osiągnięcia punktem, w którym osłona termiczna Webba mogła chronić jego zwierciadła i instrumenty naukowe jednocześnie przed ciepłem emitowanym i przez Słońce i przez Ziemię.
      Teleskop nie zostanie umieszczony w samym punkcie L2, a będzie wokół niego krążył po orbicie, której promień będzie większy od orbity Księżyca. Będzie on wynosił nawet 800 000 kilometrów, a przebycie pełnej orbity zajmie Webbowi pół roku. Dlaczego jednak nie ustawić Webba dokładnie w L2?
      Punkty libracyjne przemieszczają się wraz z ruchem Ziemi wokół Słońca. Webb musiałby za L2 podążać. L2, podobnie jak L1 i L3 są punktami metastabilnymi. Jeśli narysujemy siatkę przedstawiającą gradient zmian grawitacji w tych punktach, będzie ona miała kształt siodła. Tak jakby punkty te znajdowały się na krawędzi łączącej dwa wystające ponad nią górskie szczyty. W kierunku obu szczytów nasze punkty (L1, L2 i L3) są stabilne. Kulka pchnięta w kierunku jednego ze szczytów, wróci do punktu wyjścia. Jednak po bokach naszej krawędzi opadają doliny i w tych kierunkach punkty te są niestabilne.
      Znacznie łatwiejszą i bardziej efektywną alternatywą wobec umieszczenia Webba dokładnie w L2 jest wprowadzenie go na orbitę wokół tego punktu. Ma to i tę zaletę, że orbitujący Webb będzie równomiernie oświetlany przez Słońce, nie doświadczy zaćmienia Słońca przez Ziemię. A to bardzo ważne zarówno dla ładowania paneli słonecznych teleskopu jak i utrzymania równowagi termicznej, niezbędnej do precyzyjnej pracy jego instrumentów. Napęd Webbowi na orbicie L2 będą nadawały same oddziałujące siły grawitacyjne. Natomiast, jako, że L2 jest metastabilny, Webb będzie miał tendencję do opuszczenia jego orbity i zajęcia własnej orbity wokół Słońca. Dlatego też co mniej więcej trzy tygodnie odpali silniki, korygując swój kurs. W punktach L4 i L5 tego problemu nie ma. To punkty stabilne, a nasza siatka ze zmianami grawitacji ma tam kształt miski. Zatem obiekty krążące wokół tych punktów, samodzielnie pozostają na orbitach. Dlatego też znamy asteroidy krążące wokół L4 i L5, ale nie wokół pozostałych punktów libracyjnych.
      Jako że Webb będzie musiał korygować swoją orbitę, czas jego misji jest ograniczony ilością paliwa. Przewidziano, że teleskop będzie pracował przez 10 lat. Już teraz jednak wiemy, że prawdopodobnie uda się ten czas wydłużyć. A to dzięki niezwykle precyzyjnemu wystrzeleniu rakiety Ariane, które wyniosła go w przestrzeń kosmiczna. Ta precyzja spowodowała, że podczas dwóch korekt kursu, jakie Webb wykonał, zużyto mniej paliwa niż planowano. Pozostało go więc na tyle dużo, że prawdopodobnie teleskop pozostanie w L2 znacznie dłużej niż planowano. Musimy bowiem pamiętać, że nie jest planowana żadna misja serwisowa do teleskopu. Więc nie będzie można uzupełnić jego paliwa.
      Umieszczenie pojazdu w punkcie L2 to dość proste zadanie. Pozostaje więc pytanie, po co były zużywające cenne paliwo korekty kursu? Odpowiedź tkwi w samej architekturze Webba. Teleskop musiał dwukrotnie w czasie lotu odpalić silniki, gdyż rakieta Ariane nadała mu na tyle rozpędu, by mógł przebyć odległość dzielącą go od L2, jednak zbyt mało energii, by mógł całkowicie uciec z pola grawitacyjnego Ziemi.
      Co prawda tę dodatkową energię Ariane mogłaby mu nadać podczas startu, jednak istniało wówczas ryzyko, że będzie jej nieco za dużo i Webb będzie poruszał się zbyt szybko, by wejść na orbitę wokół L2. Mógłby ją minąć. Problem ten można by rozwiązać wyhamowując teleskop. Jednak manewr hamowania za pomocą silników Webba zużyłby więcej paliwa, niż na korekty kursu. Jednak nie to było głównym problemem, a fakt, że silniki Webba są umieszczone po jego gorącej stronie, tej zwróconej w kierunku Słońce. Zatem Webb, żeby wyhamować, musiałby wykonać obrót o 180 stopni wokół własnej osi. Wówczas jego optyka i instrumenty naukowe, które wymagają bardzo niskich temperatur, zostałyby wystawione na bezpośrednie oddziaływanie Słońca, doszłoby do ich rozgrzania i... roztopienia kleju, którym są spojone.
      Gdy Webb znajdzie się na swojej orbicie rozpocznie pięciomiesięczny proces testowania i kalibrowania zwierciadeł oraz instrumentów naukowych. Naukowcy etap misji rozpocznie się w czerwcu.
       


      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...