Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Życie może istnieć też na księżycach 121 dużych planet pozasłonecznych

Recommended Posts

Poszukiwania życia poza Układem Słonecznym skupiają się obecnie na identyfikowaniu planet znajdujących się w ekosferach swoich gwiazd. Jednak życie może istnieć nie tylko na planetach. The Astrophysical Journal szykuje publikację artykułu badaczy z Uniwersytetu Kalifornijskiego w Riverside i Uniwersytetu Południowego Queensland, którzy zidentyfikowali ponad 100 olbrzymich planet mogących posiadać księżyce zdolne do podtrzymania życia. Przyszła generacja teleskopów może odnaleźć te księżyce i szukać w ich atmosferach sygnatur życia.

W ciągu ostatniej dekady odkryto tysiące planet pozasłonecznych. Wiele z nich to planety skaliste, które znajdują się w takiej odległości od swojej gwiazdy, że może istnieć na nich woda w stanie ciekłym. Innym miejscem, gdzie potencjalne można znaleźć życie są księżyce gazowych olbrzymów, podobnych do Jowisza.

W Układzie Słonecznym znamy 175 księżyców krążących wokół 8 planet. Większość z tych księżyców krąży wokół Saturna i Jowisza, które znajdują się poza ekosferą Słońca. Jednak w innych układach planetarnych sytuacja może być inna. Jeśli w naszych poszukiwaniach życia uwzględnimy skaliste egzoksiężyce, to znacząco zwiększy się liczba miejsc, w których możemy szukać, mówi profesor Stephen Kane z UC Riverside.

Naukowcy zidentyfikowali dotychczas 121 wielkich planet, znajdujących się w ekosferach swoich gwiazd. Średnica każdej z tych planet jest co najmniej trzykrotnie większa od średnicy Ziemi, zatem mało prawdopodobne, by były to planety skaliste. Jednak każda z nich może posiadać liczne skaliste duże księżyce.

Dotychczas nie potwierdzono istnienia żadnego egzoksiężyca, jednak naukowcy spekulują, że na tego typu ciele niebieskim mogą istnieć warunki do życia lepsze nawet niż na Ziemi. Księżyc taki otrzymuje energię nie tylko z gwiazdy, ale również korzysta z energii wypromieniowywanej przez planet.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Na wielu planetach pozasłonecznych panują ekstremalne warunki. Znamy takie, gdzie z nieba spada szkło czy płynne żelazo. Teraz międzynarodowy zespół naukowy poinformował o tym, co dzieje się na planecie K2-141b. Z przeprowadzonych symulacji komputerowych wynikach, że powierzchnia planety, jej oceany i atmosfera składają się z tego samego budulca – ze skał.
      Ta planeta wielkości Ziemi znajduje się tak blisko swojej gwiazdy macierzystej, że dochodzi tam do odparowywania i skarplania się skał, prędkość wiatrów dochodzi tam do 5000 km/h, a na K2-141b istnieje ocean magmy o głębokości 100 kilometrów.
      Naukowcy z McGill University, York University oraz Indyjskiego Instytutu Edukacji Naukowej odkryli, że 2/3 planety jest ciągle oświetlone przez jej gwiazdę. Po stronie nocnej temperatura wynosi -200 stopni Celsjusza, po dziennej zaś dochodzi do 3000 stopni. To wystarczy, by rozpuścić i odparować skały. Ze skał tych tworzy się cienka atmosfera.
      Zjawiska zachodzące na K2-141b przypominają obieg wody na Ziemi. Z tym, że tam jest to obieg skał. Skały odparowują, potężne wiatry wiatry przenoszą je na ciemną stronę, gdzie dochodzi do kondensacji i opadów. Cały cykl nie jest jednak tak stabilny jak obieg wody na Ziemi. Magmowy ocean wolno przemieszcza się ze strony ciemnej na jasną. Naukowcy przewidują, że prowadzi to do zmiany składu mineralnego, co z czasem spowoduje zmiany w powierzchni i atmosferze K2-141b.
      Wszystkie skaliste planety podobne do Ziemi rozpoczynały swe życie jako magmowe światy roztopionych skał. Potem szybko ostygły i utworzyły stałe lądy. Lawowe planety dają nam wgląd w ten etap ewolucji, mówi profesor Nicolas Cowan z McGill.
      Uczeni chcą teraz zweryfikować wyniki swoich symulacji. Obecnie analizują dane z Teleskopu Kosmicznego Spitzera. W ten sposób zweryfikują wyniki obliczeń temperatury dla strony dziennej i nocnej K2-141b. Mają nadzieję, że w niedalekiej przyszłości będą mogli użyć danych z Teleskopu Kosmicznego Jamesa Webba, który ma zostać wystrzelony w przyszłym roku, co pozwoli im na sprawdzenie, czy atmosfera K2-141b zachowuje się tak, jak wynika z ich obliczeń.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zwykle zastanawiamy się, ile pozasłonecznych planet zawierających życie jesteśmy w stanie zaobserwować z Ziemi. Jednak pytanie to można odwrócić. I właśnie to zrobili profesorowie Lisa Kaltenegger z Cornell University i Joshua Pepper z Lehigh University. Postanowili oni zbadać, z ilu układów planetarnych można bezpośrednio obserwować Ziemię. Innymi słowy, ile potencjalnych cywilizacji pozaziemskich, znajdujących się na podobnym etapie rozwoju, może nas badać.
      Uczeni zidentyfikowali 1004 gwiazdy ciągu głównego, czyli dość podobne do Słońca, które mogą posiadać podobne do Ziemi planety w ekosferze. Wszystkie wspomniane gwiazdy znajdują się w promieniu 300 lat świetlnych od Ziemi, zatem w odległości, z której obca cywilizacja powinna być w stanie wykryć chemiczne sygnatury życia w ziemskiej atmosferze.
      Odwróćmy nasz punkt widzenia. Przenieśmy się na inne planety i zapytajmy, z których układów planetarnych można obserwować tranzyty Ziemi na tle Słońca, mówi Kaltenegger. Uczona przypomina, że obserwowanie tranzytów to kluczowy sposób obserwowania planet pozasłoneczych i określania ich cech charakterystycznych. Już wkrótce, dzięki Teleskopowi Kosmicznemu Jamesa Webba (JWST), będziemy w stanie – badając tranzyty – określać skład chemiczny atmosfer planet spoza Układu Słonecznego. Jeśli z naszego punktu widzenia jakaś planeta przechodzi na tle swojej gwiazdy, zatem znajduje się w linii prostej pomiędzy swoją gwiazdą a Ziemią, to już teraz – badając zmianę jasności gwiazdy przesłoniętej przez planetę – próbujemy określać np. wielkość planety. Instrument taki jak JWST pozwoli badać światło gwiazdy przechodzące przez atmosferę planety i określić skład chemiczny tej planety. Będziemy więc mogli wykrywać w niej molekuły i inne elementy wskazujące na istnienie życia. To samo jednak mogą robić potencjalne cywilizacje pozaziemskie.
      Jedynie niewielki ułamek egzoplanet przechodzi na tle swojej gwiazdy z naszego punktu widzenia. Z punktu widzenia wszystkich zidentyfikowanych przez nas układów Ziemia przechodzi na tle Słońca. A to powinno przyciągnąć uwagę potencjalnych obserwatorów. Jeśli poszukujemy inteligentnego życia, które może nas znaleźć i zechcieć nawiązać kontakt, to właśnie stworzyliśmy mapę, gdzie należy szukać, dodaje Kaltenegger.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na podobnej do Jowisza egzoplanecie WASP-76b panują jedne z najbardziej ekstremalnych warunków atmosferycznych. Z tamtejszego nieba pada deszcz... płynnego żelaza. To jeden z najbardziej ekstremalnych klimatów, na jakie kiedykolwiek się natknęliśmy, mówi David Ehrenreich z Uniwersytetu w Genewie.
      WASP-76b znajduje się w odległości około 390 lat świetlnych. To gazowy olbrzym podobny do Jowisza, jednak o znacznie ciaśniejszej orbicie. Obiega on swoją gwiazdę w czasie krótszym niż 2 ziemskie dni. Co więcej pomiędzy planetą a gwiazdą zachodzi obrót synchroniczny, co oznacza, że jedna strona planety jest zawsze zwrócona w kierunku gwiazdy. Przez to po stronie dziennej planety panuje temperatura dochodząca do 2400 stopni Celsjusza, o około 1000 stopni więcej niż po stronie nocnej.
      Przez to ta półkula planety, która jest skierowana w stronę Ziemi, jest zbyt ciemna, by ją bezpośrednio obserwować. Jednak niewielka ilość światła z gwiazd w tle przechodzi przez atmosferę WASP-76b. Dzięki temu naukowcy mogli przeanalizować skład atmosfery i wykryli w niej żelazo w formie gazowej. Znajduje się je też w atmosferach innych supergorących Jowiszów.
      Jednak w przypadku WASP-76b widmo żelaza jest nierównomiernie rozłożone. Sygnał jest obecny na granicy pomiędzy stroną dzienną a nocną, ale nie nocną a dzienną. Naukowcy sądzą, że gdy obecne w atmosferze żelazo przepłynie na nocną stronę planety, dochodzi do kondensacji chmur i opadów płynnego żelaza. To, czy podobne zjawisko zachodzi na innych ultragorących Jowiszach, zależy od prędkości wiatru i różnicy temperatury pomiędzy stroną dzienną a nocną.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      CHEOPS, pierwszy europejski satelita, którego wyłączonym celem jest badanie planet pozasłonecznych, wystartował przed trzema godzinami z kosmodromu Kourou w Gujanie Francuskiej. W przeciwieństwie do innych tego typu misji CHEOPS (Characterising Exoplanet Satellite) nie będzie szukał nowych planet, ale badał te już znalezione.
      Zadaniem CHEOPSA będzie scharakteryzowanie planet wielkości od Neptuna do Ziemi.
      1. Satelita będzie rejestrował przejścia planet na tle tych gwiazd, o których wiemy, że posiadają układ planetarny. Stosunek sygnału do szumu rejestrowany przez CHEOPSa będzie wynosił 5:1 dla planet wielkości Ziemi o okresie obiegu 50 dni krążących wokół żółtych karłów typu GV (to gwiazdy typu Słońca) o obserwowanej jasności gwiazdowej jaśniejszej od 9. Taki stosunek sygnału do szumu dla tych gwiazd jest wystarczający, by stwierdzić, czy planeta posiada znaczącą atmosferę. CHEOPS powinien więc znaleźć najbardziej obiecujące obiekty badań dla urządzeń wyposażonych w spektroskopy, takich jak Teleskop Kosmiczny Jamesa Webba.
      2. Urządzenie ma dostarczyć precyzyjnych pomiarów średnicy gorących Neptunów krążących wokół gwiazd o magnitudo większym niż 12 i poszukać powiązanych z nimi mniejszych planet. W tym przypadku będą badane pomarańczowe karły (typ K) oraz czerwone karły (typ M). Tutaj czułość CHEOPSA jest większa, a stosunek sygnału do szumu wynosi 30:1, dzięki czemu satelita uściśli pomiary dotyczące rozmiarów planet, a margines błędu nie przekroczy 10%. To pozwoli lepiej opisać strukturę fizyczną gorących Neptunów. Ponadto naukowcy są niemal pewni, że CHEOPS wykryje wokół wspomnianych gwiazd mniejsze planety, których dotychczas nie znamy. Z wcześniejszych obserwacji Teleskopu Keplera wynika bowiem, że około 1/3 gorących Neptunów ma mniejszych towarzyszy. CHEOPS idealnie nadaje się do ich zarejestrowania.
      3. Ostatnim zadaniem CHEOPSa będzie zbadanie modulacji fazy docierających sygnałów związanej z różnicą temperatur pomiędzy dzienną a nocną stroną planety. Badanie takie pozwoli określić przepływy energii w atmosferze.
      CHEOPS nie jest jedynym urządzeniem, którego misja rozpoczęła się wraz z dzisiejszym startem z Kourou. Na pokładzie rakiety znajdował się też satelita OPS-SAT, w którego tworzeniu udział miała polska firma Creotech Instruments. To niewielkie, ważące 6 kilogramów urządzenie ma na swoim pokładzie komputer 10-krotnie potężniejszy niż jakikolwiek inny satelita Europejskiej Agencji Kosmicznej.
      OPS-SAT będzie służył jako laboratorium do testowania pokładowych systemów satelitarnych i technik kontroli misji. Misja jest wyjątkowa, ponieważ jest odpowiedzią na rzeczywistą potrzebę przemysłu kosmicznego, który z jednej strony musi doskonalić swoje procedury i podnosić efektywność misji, a z drugiej, z uwagi na koszty produkcji satelitów i wyniesienia ich na orbitę, nie może ryzykować niepowodzeniem misji przez oparcie ich na eksperymentalnych, nieprzetestowanych w warunkach kosmicznych rozwiązaniach – stwierdził Jacek Kosiec, Prezes Creotech Instruments S.A., spółki która wraz z polskimi partnerami: Centrum Badań Kosmicznych PAN i firmą GMV Polska, odpowiadała za około 1/3 prac projektowych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po 10 latach udało się potwierdzić.. istnienie pierwszej egzoplanety zaobserwowanej przez Teleskop Kosmiczny Keplera. Ten niezwykle zasłużony instrument naukowy odkrył tysiące planet, a kolejne tysiące wciąż czekają na potwierdzenie. Jednak pierwszy zaobserwowany przez niego obiekt, nazwany obecnie Kepler-1658b, musiał czekać niemal 10 lat zanim potwierdzono, że to rzeczywiście jest planeta.
      Teleskop Kosmiczny Keplera został wystrzelony 6 marca 2009 roku, a jego misja zakończyła się w listopadzie 2018 roku, gdy urządzeniu wyczerpało się paliwo. Jego zadaniem była obserwacja tysięcy gwiazd i rejestrowanie zmian ich jasności. Regularne okresowe spadki jasności gwiazdy mogą świadczyć o tranzytach, czyli o przejściach planet na tle gwiazdy obserwowanej z Ziemi. Jako, że spadki jasności mogą być powodowane też innymi czynnikami, specjaliści muszą szczegółowo analizować dane, zanim potwierdzą, że rzeczywiście odkryto nową planetę.
      Dotychczas potwierdzono odkrycie przez Keplera niemal 3000 planet, a kolejne tysiące czekają na potwierdzenie. Paradoksalnie, pierwszy kandydat na planetę zarejestrowany przez Keplera, został potwierdzony dopiero teraz.
      Prace nad potwierdzeniem, że Kepler-1658b to rzeczywiście planeta zajęły tak długo, gdyż początkowo źle oszacowano wielkość gwiazdy, wokół krąży planeta. Została ona mocno niedoszacowana, podobnie jak sama planeta. Gdy przeanalizowano uzyskane dane stwierdzono, że nie mają one sensu i mamy tu do czynienia z wynikiem fałszywie dodatnim.
      Na szczęście doktorantka Ashley Chontos z University of Hawaii postanowiła powtórnie przeanalizować archiwalne dane Keplera. Nasze nowe analizy, podczas których wykorzystaliśmy fale akustyczne emitowane przez gwiazdy wykazały, że ta gwiazda jest trzykrotnie większa niż wcześniej przypuszczano. To zaś oznacza, że i planeta jest trzykrotnie większa. Kepler-1658b należy do klasy gorących Jowiszów, mówi Chontos. Już same wyliczenia wskazywały, że mamy do czynienia z planetą, jednak do potwierdzenia konieczne były dalsze obserwacje.
      Skontaktowaliśmy się z Dave'em Lathamem, astronomem ze Smithsonian Astrophysical Observatory, a on wraz z zespołem przeprowadził obserwacje, które jednoznacznie potwierdziły, że Kepler-1658b to planeta, mówi Dan Huber, astronom z University of Hawaii.
      Gwiazda Kepler-1658 jest o 50% bardziej masywna i trzykrotnie większa od Słońca. Kepler-1658b krąży w odległości zaledwie dwukrotnie większej niż średnica samej gwiazdy, co czyni ją jedną z planet krążących po najciaśniejszej orbicie. Widziana z powierzchni planety jej gwiazda wydaje się 60-krotnie większa niż Słońce widziane z powierzchni Ziemi.
      Kepler-1658 świetnie pokazuje, dlaczego lepsze rozumienie gwiazd jest istotne dla zrozumienia planet. Pokazuje też, jak wiele skarbów możemy znaleźć w danych zebranych przez Keplera, mówi Chotos.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...