Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Niewidzialna bariera na powierzchni oceanów zmniejsza wchłanianie CO2

Recommended Posts

Niewidoczna dla gołego oka warstwa składników biologicznych znajdujących się na powierzchni oceanów zmniejsza tempo przepływu dwutlenku węgla pomiędzy atmosferą a oceanami. Związki te – surfaktanty – są produkowane przez plankton oraz bakterie i tworzą na powierzchni wody oleistą powłokę.

Naukowcy z Uniwersytetów w Newcastle, Exeter i Uniwersytetu Heriot-Watt opublikowali na łamach Nature Geoscience wyniki badań, które, jak mówią, mają olbrzymie znaczenie dla przewidywania przyszłych zmian klimatycznych.

Obecnie oceany pochłaniają około 25% całej antropogenicznej emisji dwutlenku węgla. Są więc największymi pochłaniaczami tej substancji. Wymiana gazów pomiędzy atmosferą a oceanem jest kontrolowana przez turbulencje na powierzchni oceanów, a główną przyczyną tych turbulencji są fale generowane przez wiatr. Im większe turbulencje, tym większa wymiana gazów.

Dotychczas specjaliści mieli problemy z oceną wpływu wspomnianej warstwy na wymianę gazów. Dopiero teraz udało się opracować odpowiedni system, dzięki któremu naukowcy stwierdzili, że surfaktanty na powierzchni oceanów mogą zmniejszać wymianę CO2 nawet o 50 procent.

Najnowsze badania, bazujące na wcześniejszych osiągnięciach nauki, wskazują, że wbrew temu co się wydawało, naturalne surfaktanty na dużych powierzchniach oceanów mogą redukować wpływ silnych wiatrów. Zmniejszenie pochłaniania dwutlenku węgla przez surfaktanty oznacza, że jest on wolniej usuwany z atmosfery, a to ma znaczenie dla przewidywania przyszłego klimatu, mówi biolog morski profesor Rob Upstill-Goddard z Newcastle University.

Odkrycie to jest niezwykle ważne, gdyż wraz ze wzrostem temperatur, zwiększa się ilość surfaktantów. Im wyższe będą temperatury, tym większa warstwa surfaktantów i tym mniejsze zdolności oceanów do pochłaniania gazów atmosferycznych, dodaje doktor Ryan Pereira z Heriot-Watt University.

W 13 zbadanych przez nas miejscach na Oceanie Atlantyckim odkryliśmy, że biologiczne surfaktanty zmniejszają wzmacniane przez wiatry tempo wymiany gazów. Wykonaliśmy unikatowe pomiary za pomocą specjalnie wybudowanego zbiornika, który pozwalał mierzyć wyłącznie wpływ surfaktantów na wymianę gazów, stwierdza Pereira.

Badania były prowadzone na różnych szerokościach geograficznych, od regionów subpolarnych po tropikalne.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy poszukujący życia poza Układem Słonecznym zwracają uwagę na planety o podobnej masie, rozmiarach, temperaturze i składzie atmosfery, co Ziemia. Astronomowie z University of Cambridge twierdzą jednak, że istnieje znacznie więcej możliwości, niż tylko znalezienie „drugiej Ziemi”. Na łamach Astrophysical Journal opublikowali artykuł, w którym informują o zidentyfikowaniu nowej klasy planet, na których może istnieć życie. A jako że planety tą są bardziej rozpowszechnione i łatwiejsze do obserwowania niż kopie Ziemi, nie można wykluczyć, że ślady życia poza Układem Słonecznym znajdziemy w ciągu kilku lat.
      Ta nowa klasa została przez nich nazwana „planetami hyceańskimi”, od złożenia wyrazów „hydrogen” (wodór) i „ocean”. To światy pokryte oceanem o atmosferze bogatej w wodór. Planety hyceańskie otwierają zupełnie nowe możliwości w dziedzinie poszukiwania życia, mówi główny autor badań, doktor Nikku Madhusudhan z Insytutu Astroomii.
      Wiele z kandydatów na „planety hyceańskie” to obiekty większe i cieplejsze od Ziemi. Ale z ich charakterystyk wynika, że są pokryte olbrzymimi oceanami zdolnymi do podtrzymania życia w takiej formie, jaką znajdujemy z najbardziej ekstremalnych ziemskich środowiskach wodnych. Co więcej, dla planet takich istnieje znacznie większa ekosfera.
      Ekosfera, przypomnijmy, to taki zakres odległości planety od jej gwiazdy macierzystej, w którym woda na planecie może istnieć w stanie ciekłym. Jak się okazuje, w przypadku „planet hyceańskich” ekosfera jest szersza niż dla planet wielkości Ziemi.
      W ciągu ostatnich niemal 30 lat odkryliśmy tysiące planet poza Układem Słonecznym. Większość z nich to planety większe od Ziemi, a mniejsze od Neptuna, zwane super-Ziemiami. To zwykle skaliste lub lodowe olbrzymy z atmosferami bogatymi w wodór. Wcześniejsze badania takich planet pokazywały, że jest na nich zbyt gorąco, by mogło tam istnieć życie.
      Niedawno zespół Madhusudhana prowadził badania super-Ziemi K2-18. Naukowcy odkryli, że w pewnych okolicznościach na planetach takich mogłoby istnieć życie. Postanowili więc przeprowadzić szerzej zakrojone badania, by określić, jakie warunki powinna spełniać planeta i jej gwiazda, by tego typu okoliczności zaszły, które ze znanych egzoplanet je spełniają oraz czy możliwe byłoby zaobserwowanie z Ziemi ich biosygnatur, czyli śladów tego życia.
      Uczeni stwierdzili, że „planety hyceańskie” mogą być do 2,6 razy większe od Ziemi, temperatura ich atmosfery może dochodzić do 200 stopni Celsjusza, ale warunki panujące w oceanach mogą być podobne do warunków, w jakich w ziemskich oceanach istnieją mikroorganizmy. Do klasy tej należą też „ciemne planety hyceańskie”, których obrót jest zsynchronizowany z ich obiegiem wokół gwiazdy, zatem w stronę gwiazdy zwrócona jest zawsze jedna strona planety. Tego typu ciała niebieskie mogłyby utrzymać życie tylko na stronie nocnej.
      Planety większe od Ziemi, ale nie bardziej niż 2,6-krotnie, dominują wśród odkrytych planet. Można przypuszczać, że „planety hyceańskie” występują wśród nich dość powszechnie. Dotychczas jednak nie cieszyły się zbyt dużym zainteresowaniem, gdyż skupiano się przede wszystkim na badaniu planet najbardziej podobnych do Ziemi.
      Jednak sam rozmiar to nie wszystko. Aby potwierdzić, że mamy do czynienia z „planetą hyceańską” musimy też poznać jej masę, temperaturę oraz skład atmosfery.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Polsko-brytyjsko-bułgarski zespół naukowców zaprezentował nową klasę aktywnych mikropływaków. By uzyskać pływaki, wystarczy schłodzić 3-składnikową mieszaninę, złożoną z kropli oleju, wody i środka powierzchniowo czynnego (surfaktanta). Powolne chłodzenie takiej zawiesiny prowadzi do powstania niesferycznych kropli. Później wytwarzają one nitkowate struktury przypominające bakteryjne wici, które indukują ruch. Opisane zmiany są w pełni odwracalne (uczeni podkreślają, że kluczem do tego są cykliczne zmiany temperatury otoczenia).
      Autorami artykułu z pisma Nature Physics są specjaliści z Wydziału Fizyki Uniwersytetu Warszawskiego, Uniwersytetu w Cambridge, Queen Mary University of London oraz Uniwersytetu Sofijskiego im. św. Klemensa z Ochrydy.
      Mikrokropelki w emulsji pływają, wytwarzając wici
      Obserwacje można było prowadzić pod mikroskopem, ponieważ kropelki mają średnicę ok. 20 mikrometrów. Okazało się, że podczas chłodzenia krople oleju w wodnym roztworze środka powierzchniowo czynnego mogą tworzyć włókna (jak już wspominaliśmy, przypominają one wici bakterii). Są one wytwarzane dzięki wytłaczaniu materiału z wnętrza kropli. Należy dodać, że początkowo włókno jest proste, lecz rosnąc, ulega niestabilności wyboczeniowej. Ostateczny kształt jest wynikiem współzawodnictwa jego elastyczności oraz hydrodynamicznego oporu płynu.
      Podczas powolnego chłodzenia w temperaturach ok. 2-8°C cząsteczki surfaktanta w środku kropli zaczynają tworzyć fazę plastyczną i odkształcają mikrokrople w taki sposób, że w jednym lub paru miejscach na powierzchni zaczynają one wytwarzać wydłużone struktury. Tworzenie się włókien wywołuje ruch kropli. Proces jest całkowicie odwracalny - wystarczą cykliczne zmiany temperatury otoczenia.
      Przed wytworzeniem wici krople przybierają wielokątne kształty. Dzieje się tak, gdyż surfaktant zamarza przy ich powierzchni.
      Prezentujemy nową klasę aktywnych, elastycznych mikropływaków, wytwarzanych przez proste schłodzenie 3-składnikowej mieszaniny. Są one łatwe do kontrolowania, a ich wytworzenie jest tanie. Dzięki temu mamy proste narzędzie do badania dynamiki znacznie bardziej skomplikowanych układów biologicznych – wyjaśnia dr Maciej Lisicki z Wydziału Fizyki UW. Zmieniając temperaturę zewnętrzną i kontrolując szybkość chłodzenia, jesteśmy w stanie zaobserwować powstawanie misternych struktur geometrycznych przypominających wici pływających mikroorganizmów. Surfaktanty użyte w tym badaniu są biokompatybilne, a zatem układ tego typu może być przydatny w dalszych badaniach dynamiki materii aktywnej, zwłaszcza w mieszaninach sztucznych i biologicznych mikropływaków, w celu badania ich kolektywnej dynamiki i oddziaływań pomiędzy pływakami - dodaje.
      Naukowcy analizują deformacje włókien i wiążą je z ruchem kropelek. Korzystając z narzędzi teoretycznych do opisu dynamiki płynów w mikroskali, jesteśmy w stanie zrozumieć, dlaczego te włókna się tworzą, wyjaśniamy ich kształty i określamy ilościowo obserwowany ruch kropel - tłumaczy dr Lisicki.
      Wieloletnia współpraca
      Zespół prof. Nikolaia Denkova z Uniwersytetu Sofijskiego zsyntetyzował krople i przeprowadził eksperymenty (naukowców z Bułgarii wspierali na tym etapie uczeni z grupy dr. Stoyana Smoukova z Queen Mary University of London). Model teoretyczny opisujący dynamikę nowych cząstek aktywnych sporządzili dr Lisicki, a także dr Gabriele De Canio i prof. Eric Lauga z Uniwersytetu w Cambridge.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Kontynentalna skorupa ziemska mogła pojawić się nawet 500 milionów lat wcześniej niż dotychczas przypuszczano. Określenie daty jej powstania jest o tyle istotne, że lepiej pomaga zrozumieć warunki, w jakich na naszej planecie pojawiło się życie.
      Wietrzenie skorupy kontynentalnej dostarcza do oceanów wielu składników odżywczych, które mogły pomóc w utrzymaniu i rozwoju prymitywnego życia. Dlatego tak ważnym jest odpowiedź na pytanie, kiedy pojawiły się kontynenty. Aby na nie odpowiedzieć Desiree Roerdink z Uniwersytetu w Bergen i jej zespół zbadali próbki skał z 6 miejsc w Australii, RPA i Indiach.
      W próbkach znajdował się baryt, minerał z grupy siarczanów, który może powstawać w pobliżu kominów hydrotermalnych. Baryt się nie zmienia. Jego skład chemiczny nosi ślady środowiska, w jakim powstawał, stwierdziła Roerdink prezentując wyniki swoich badań w czasie spotkania Europejskiej Unii Nauk Geologicznych.
      Naukowcy wykorzystali stosunek izotopów strontu, by obliczyć, kiedy rozpoczęło się wietrzenie badanych przez nich skał. Na tej podstawie stwierdzili, że po raz pierwszy proces taki miał miejsce około 3,7 miliarda lat temu.
      Ziemia powstała przed około 4,5 miliardami lat. Z czasem jej zewnętrzna część ostygła na tyle, że powstała sztywna skorupa pokryta globalnym oceanem. Przed około 4 miliardami lat rozpoczął się archaik, epoka geologiczna, w której pojawiło się życie. Mamy silne dowody na to, że co najmniej 3,5 miliarda lat temu na Ziemi istniały mikroorganizmy. Dokładnie jednak nie wiemy, kiedy życie się pojawiło.
      Aaron Satkoski z University of Texas mówi, że badania grupy Roerdink pokazują, iż życie mogło pojawić się najpierw na lądzie. Badania te pozwalają nam stwierdzić, kiedy istniały lądy, które mogły pomóc w powstaniu życia, stwierdza uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Obecny w atmosferze dwutlenek węgla napędza wzrost roślin. Wiele osób żywi przekonanie, że im więcej węgla w atmosferze, tym bujniejszy wzrost roślinności, a im więcej roślinności, tym więcej węgla z atmosfery one wchłaniają. Wyniki badań, które opublikowano właśnie na łamach Nature wskazują, że gdy więcej CO2 w atmosferze powoduje bardziej bujny wzrost roślin ma to... negatywny wpływ na zdolność gleby do przechowywania węgla.
      Jedno z możliwych wyjaśnień tego fenomenu brzmi: bujniejsza roślinność wykorzystuje więcej składników zawartych w glebie. A to z kolei przyczynia się do zwiększonej aktywności mikroorganizmów, w wyniku której z gleby uwalniany jest dwutlenek węgla, który bez tej dodatkowej aktywności zostałby w niej uwięziony.
      Wyniki badań przeczą powszechnemu przekonaniu, że im więcej biomasy rośnie, tym więcej jej się rozkłada, a zawarty w niej węgiel zostaje uwięziony w glebie. Autorzy najnowszych badań przeanalizowali dane ze 108 przeprowadzonych wcześniej eksperymentów, podczas których sprawdzano poziom węgla w glebie, tempo wzrostu roślin oraz wpływ wysokiego stężenia CO2 na oba te czynniki. Ze zdumieniem zauważyli istnienie mechanizmu, który przeczy intuicji. Gdy zwiększa się masa roślin, zwykle zmniejsza się ilość węgla w glebie, mówi główny autor badań, Cesar Terrer z Uniwersytetu Stanforda.
      Okazało się, że jednoczesny wzrost masy roślinnej oraz koncentracja węgla w glebie są bardzo trudne do osiągnięcia, mówi jeden z autorów badań, profesor Rob Jackson.
      Uczony dodaje, że obecnie stosowane modele klimatyczne nie biorą pod uwagę tego zjawiska, wskutek czego prawdopodobnie przeszacowują one zdolność gleby do przechowywania węgla pobranego z atmosfery.
      Szacuje się, że rośliny i gleba absorbują obecnie około 30% CO2 emitowanego przez człowieka. Oszacowanie, jak wiele węgla może zostać uwięzione w glebie jest niezwykle ważne, gdyż węgiel ten powinien pozostawać przez długi czas. Gdy roślina ulega rozkładowi, część uwięzionego w niej węgla powraca do atmosfery. Jednak gdy węgiel zostaje uwięziony w glebie, pozostaje tam przez setki lub tysiące lat, wyjaśnia Terrer.
      Nowa praca bazuje na opracowaniu autorstwa Terrera, Jacksona i innych, którzy w 2019 roku oszacowali, że dwukrotne – w porównaniu z epoką przedprzemysłową – zwiększenie koncentracji atmosferycznego CO2 doprowadzi do zwiększenia biomasy o około 12%, zatem rośliny prawdopodobnie odegrają znacznie mniejszą niż przewidywano rolę w wycofywaniu węgla z atmosfery.
      Teraz, po sprawdzeniu jednoczesnej zdolności roślin i gleby do pobierania węgla z atmosfery, uczeni doszli do wniosku, że należy zrewidować i ten mechanizm. W glebie uwięzione jest więcej węgla niż w roślinach. Dlatego też musimy się jej lepiej przyjrzeć, gdy zastanawiamy się nad przewidywanymi zmianami szaty roślinnej, stwierdza Jackson. Z badań wynika, że niespodziewanie dużo węgla mogą w przyszłości absorbować użytki zielone, jak łąki czy pastwiska. W scenariuszu, w którym CO2 jest dwukrotnie wyższe niż przed rewolucją przemysłową, zdolność użytków zielonych do przechowywania węgla rośnie o 8%. Tymczasem zdolność lasów pozostaje na tym samym poziomie co obecnie. Stanie się tak pomimo tego, iż biomasa lasów ma w tym czasie wzrosnąć o 23%, a biomasa użytków zielonych o 9%. Dzieje się tak częściowo dlatego, że drzewa wiążą w glebie stosunkowo mało pochłanianego przez siebie węgla.
      Z punktu widzenia bioróżnorodności sadzenie lasów na obszarach zajętych przez naturalne użytki zielone czy sawanny to błąd. Nasze badania pokazują, że ekosystemy użytków zielonych są bardzo ważne z punktu widzenia pochłaniania węgla, mówi Terrer.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Archeolodzy z Danii, USA, Wielkiej Brytanii i Australii przeprowadzili badania podwodnych wysypisk muszli, udowadniając, że tego typu usypiska stworzone ręką człowieka można odróżnić od naturalnych składowisk muszli, a zatem można je wykorzystać do badań ludzkiego osadnictwa sprzed okresu, gdy badany obszar został pochłonięty przez wodę.
      Naukowcy zbadali wysypiska znajdujące się obecnie w wodach Zatoki Meksykańskiej oraz u wybrzeży Danii. Sam fakt ich istnienia dowodzi, że osadnictwo w badanych regionach było o setki lat starsze, niż się dotychczas uważa. Ponadto wysypiska muszli pozwalają badań związek środowiska wodnego z wczesnymi mieszkańcami regionów nadbrzeżnych.
      Wysypiska muszli to dla nas cenny, obecny na całym świecie, znacznik wskazujący na intensywne wykorzystywanie zasobów morskich. Jednak zawsze sądziliśmy, że wiele takich struktur zostało zniszczonych przez podnoszące się wody oceanów, mówi profesor Geoff Bailey z University of York.
      Przez znaczną część historii ludzkości poziom oceanów był znacznie niższy, nawet o 130 metrów niższy, niż obecnie. Powierzchnia lądów była o miliony kilometrów kwadratowych większa. A zdobyte dowody jasno pokazują, że ludzie żyli na tych rozległych równinach zanim pochłonęła je woda, dodaje profesor Jonathan Benjamin z Flinders University.
      Dzięki nowym badaniom wiemy na przykład, że w Danii takie usypiska muszli były bardziej powszechne niż się uważa, co może znacząco zmienić pogląd na użytkowanie wybrzeża 5000–7300 lat temu.
      Badania pokazują, że im więcej takich miejsc znajdziemy, z tym większym prawdopodobieństwem będziemy musieli na nowo napisać historię wykorzystania wybrzeża przez ludzi. Bardzo ważne jest, byśmy kontynuowali badania podwodnych wysypisk muszli, stwierdza doktor Peter Moe Astrup z duńskiego Moesgaard Museum.
      W takich wysypiskach muszli możemy znaleźć resztki pożywienia, wyrzucone narzędzia i ozdoby, struktury mieszkalne, a nawet pochówki, wyjaśnia doktor Katherine Woo z Uniwersytetu im. Jamesa Cooka. Dostarczają nam więc one tak istotnych informacji jak dane o diecie, technologii wytwarzania przedmiotów i handlu. Co ważne, pozwalają nam zrozumieć, jak ludzie zmieniali z czasem swoją kulturę, jak wchodzili w interakcje z otoczeniem, również w czasach, gdy zmieniał się klimat i rósł poziom oceanów.
      Specjaliści zwracają uwagę, że w czasach, gdy intensywnie rozwijamy infrastrukturę nadbrzeżną – budując np. morskie farmy wiatrowe – musimy uwzględnić potrzebę prowadzenia podwodnych prac archeologicznych na szelfie kontynentalnym. Inaczej możemy bezpowrotnie zniszczyć ważne stanowiska i utracić zawarte w nich informacje.
       


      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...