-
Similar Content
-
By KopalniaWiedzy.pl
Neonikotynoidy, pestycydy, które masowo zabijają owady – w tym pszczoły miodne – mają różny wpływ na różne części ciała trzmieli, donoszą badacze z Queen Mary University. Okazało się, że wpływ tych toksyn na owada jest różny w zależności od tego, czy dotyka tkanki mózgu, nóg czy cewek malpighiego, pełniących rolę nerek. Badacze wystawili trzmiele na działanie takiego stężenia klotianidyny, z jakim mogą spotkać się w rzeczywistości. Zetknięcie z tą rozpylaną na polach uprawnych toksyną prowadziło do dramatycznej zmiany aktywności genów, a 82% tych zmian jest specyficzna dla konkretnych tkanek.
Każda tkanka, którą zbadaliśmy, bardzo silnie odczuła wpływ pestycydu. Ten niszczący wpływ na całe ciało wyjaśnia, dlaczego pszczoły wystawione na działanie neonikotynidów mają wielorakie problemy, od upośledzenia funkcji ruchowych, poprzez zmniejszenie możliwości uczenia się po uszkodzony układ odpornościowy, mówi profesor Yannick Wurm.
Neonikotynoidy, takie jak klotianidyna, są bardzo szeroko stosowane do ochrony upraw przed owadami. Zabijają wszystkie gatunki, bez względu na to, czy jest to szkodnik upraw, czy też owad pożyteczny. Nawet niskie dawki neonikotynoidów są niezwykle szkodliwe dla pożytecznych owadów.
Autorzy najnowszych badań wykorzystali używane w biomedycynie narzędzia do wysokorozdzielczej diagnostyki molekularnej. W ten sposób sprawdzali poszczególne szlaki molekularne, za pomocą których pestycydy niszczą organizmy owadów. Okazało się na przykład, że w przypadku mózgu klotianidyna zaburza pracę genów zaangażowanych w transport jonów, toksyna atakuje też geny odpowiedzialne za pracę mięśni uda oraz oraz zmniejsza aktywność genów odpowiedzialnych za prawidłową pracę cewek malphigiego, zatem za usuwanie z organizmu szkodliwych produktów przemiany materii.
Nasze badania wskazują, że obecnie prowadzone oceny ryzyka stwarzanego przez pestycydy – a nie bierze się podczas nich uszkodzeń specyficznych dla tkanek – nie uwzględniają pełnej gamy uszkodzeń, które niszczą ciała owadów zapylających, nie prowadząc jednak do ich natychmiastowej śmierci, dodaje doktor Federico López-Osorio.
Zmiany powodowane przez pestycydy mają podobny wzorzec, co zmian powodowane starzeniem się i nowotworami. Stosujemy pestycydy bez zrozumienia, w jaki sposób wpływają one na pożyteczne owady zapylające. Przeprowadzone przez nas badania wskazują, że wpływają one na każdą tkankę, zaburzając jej funkcje życiowe. Dlatego skutki stosowania pestycydów są tak niszczące i rozległe. Wzywamy do przemyślenia sposobu, w jaki oceniamy, regulujemy i stosujemy pestycydy. Nie tylko po to, by chronić zapylaczy, ale by chronić cały zależny od nich ekosystem, dodaje główna autorka badań, doktor Alicja Witwicka.
« powrót do artykułu -
By KopalniaWiedzy.pl
Badania DNA ludzi zabitych w Pompejach przez Wezuwiusza pokazały, jak błędne były czynione przez wieki założenia. Okazuje się, że rzekome rodziny nie były rodzinami, zmarłym źle przyporządkowano płeć. Okazało się ponadto, że ludność Pompejów w większości stanowili emigranci ze wschodnich regionów Morza Śródziemnego.
Erupcja Wezuwiusza nie dała szans na ucieczkę wielu mieszkańcom miasta. Ci, którzy przeżyli pierwszą jej fazę, zabiły lawiny piroklastyczne, szybko przemieszczające się chmury gorących gazów i popiołów. Pokryły one ciała ofiar grubą warstwą, na zawsze zachowując ich kształt.
Od XIX wieku naukowcy wykonują w Parco Archeologico di Pompei odlewy ciał, wstrzykując gips z puste miejsca, pozostałe po rozłożeniu się tkanek. Uczonym, którzy prowadzili zabiegi konserwatorskie, udało się pozyskać DNA z pofragmentowanych szkieletów zatopionych w 14 z 86 tych odlewów. To zaś pozwoliło na określenie płci zmarłych, ich pochodzenia oraz związków genetycznych pomiędzy nimi. I pokazało, jak błędne były dotychczasowe założenia, które opierano na wyglądzie i pozycji ciał.
Na przykład w Domu Złotej Bransolety, jedynym miejscu z którego mamy DNA całej grupy ciał, okazało się, że cztery osoby, które interpretowano jako rodzice z dwójką dzieci, nie były w żaden sposób ze sobą spokrewnione, mówi profesor David Caramelli z Uniwersytetu we Florencji. To nie jedyne błędne przypuszczenia, zweryfikowane przez DNA.
Innym znanym przykładem jest dorosła osoba nosząca złotą bransoletę i trzymająca dziecko. Tradycyjnie interpretowano je jako matkę z dzieckiem. Okazało się, że to mężczyzna i dziecko, którzy nie byli ze sobą spokrewnieni. Mamy też dwie obejmujące się osoby, które interpretowano jako matka z córką lub siostry. Teraz wiemy, że jedna z tych osób to mężczyzna, dodaje David Reich z Uniwersytetu Harvarda.
Ponadto wszyscy mieszkańcy Pompejów, w przypadku których udało się zdobyć dane z całego genomu, okazali się w głównej mierze potomkami emigrantów ze wschodnich regionów Śródziemiomorza. Pochodzenie takie widoczne jest też w genomach współczesnych im mieszkańców Rzymu, co tylko pokazuje, jak kosmopolityczne było Imperium Romanum w tych czasach.
« powrót do artykułu -
By KopalniaWiedzy.pl
Po 2,5 roku pracy na dnie Krateru Jezero łazik Perseverance przygotowuje się do wielomiesięcznej wspinaczki na zachodnią krawędź Krateru. Prawdopodobnie napotka tam najbardziej stromy i najtrudniejszy teren, z jakim przyszło mu się dotychczas zmierzyć. Perseverance wyruszy w podróż 18 sierpnia, a wspinaczka i badanie terenu będą już 5. kampanią naukową prowadzoną od czasu lądowania 18 lutego 2021 roku.
Perseverance zakończył 4 projekty badawcze, zebrał 22 próbki skał i przejechał ponad 18 mil. Zaczynamy teraz Crater Rim Campaign. Łazik jest w doskonałym stanie, a my nie możemy się doczekać, by zobaczyć, co jest na szczycie badanego przez nas obszaru, mówi Art Thompson, menedżer projektu Perseverance w Jet Propulsion Laboratory.
Głównymi celami najnowszej kampanii badawczej są dwa miejsca, nazwane „Pico Turquino” oraz „Witch Hazel Hill”. Na zdjęciach z orbiterów krążących wokół Marsa widać, że na Pico Turquino znajdują się stare pęknięcia, które mogą powstać w wyniku zjawisk hydrotermalnych. Z kolei warstwy, z których zbudowane jest Witch Hazel Hill sugerują, że struktura ta powstała w czasach, gdy na Marsie panował zupełnie inny klimat niż obecnie. Zdjęcia ujawniły tam podłoże skalne o jaśniejszym kolorze, podobne do tego, które łazik znalazł na obszarze zwanym „Bright Angel”. Tamtejsza skała „Cheyava Falls” miała strukturę i sygnatury chemiczne wskazujące, że mogła powstać przed miliardami lat w wyniku działania organizmów żywych w środowisku wodnym.
Podczas podróży ku krawędzi krateru Perseverance będzie polegał na półautomatycznych mechanizmach, których celem jest unikanie zbyt dużego ryzyka. Ma wspinać się po stokach nachylonych nawet o 23 stopnie i unikać miejsc, których nachylenie będzie wynosiło ponad 30 stopni. Łazik wjedzie na wysokość 300 metrów i zakończy podróż w miejscu nazwanym „Aurora Park”.
« powrót do artykułu -
By KopalniaWiedzy.pl
Członkowie Ekspedycji 399 „Building Blocks of Life, Atlantis Massif” wydobyli rekordowo długi, 1286-metrowy rdzeń z płaszcza Ziemi. Odwiert został wykonany za pomocą statku JOIDES Resolution na Grzbiecie Śródatlantyckim. Na tym najdłuższym grzbiecie śródoceaniczym na Ziemi skały z płaszcza znajdują się blisko powierzchni. Mimo więc trudności w wykonywaniu odwiertów pod powierzchnią oceanu, pierwsze próby podjęto już w latach 60. XX wieku.
Wykonanie tak głębokiego odwiertu w płaszczu i pozyskanie materiału to niezwykle ważny krok w rozwoju nauk o Ziemi. Już wyniki pierwszych badań pokazały, że wysiłek się opłacił. Uzyskane wyniki różnią się od tego, czego się spodziewaliśmy. W skałach jest znacznie mniej piroksenów, za to występuje w nich bardzo duże stężenie magnezu. Oba te zjawiska to wynik znacznie bardziej intensywnych niż przewidywano procesów topnienia, przyznaje główny autor badań, profesor Johan Lissenbarg z Uniwersytetu w Cardiff. Dalsze badania tych zjawisk mogą mieć olbrzymi wpływ na nasze rozumienie tworzenia się magmy oraz jej roli w wulkanizmie. Naukowcy znaleźli też kanały, którymi magma przemieszcza się ku powierzchni planety.
Naukowcy mają też wstępne wyniki badań nad interakcją pomiędzy oliwinami a wodą morską. W wyniku tej interakcji dochodzi do serii reakcji chemicznych, w wyniku których powstaje wodór oraz inne molekuły potrzebne w procesach życiowych. Być może więc lepiej zrozumiemy początki życia na naszej planecie.
Analiza skał z płaszcza dostarczy informacji na temat warunków chemicznych i fizycznych, jakie panowały na Ziemi w odległej przeszłości. Warunków, w jakich powstawało i rozwijało się życie.
Wydobyty rdzeń będzie przedmiotem badań przez kolejne dziesięciolecia.
« powrót do artykułu -
By KopalniaWiedzy.pl
NASA i DARPA ujawniły szczegóły dotyczące budowy silnika rakietowego o napędzie atomowym. Jądrowy silnik termiczny (NTP) DRACO (Demonstration Rocket for Agile Cislunar Operations) powstaje we współpracy z Lockheed Martinem i BWX Technologies. Najpierw zostanie zbudowany prototyp, następnie silnik do pojazdów zdolnych dolecieć do Księżyca, w końcu zaś silnik dla misji międzyplanetarnych. Jeszcze przed kilkoma miesiącami informowaliśmy, że DRACO może powstać w 2027 roku. Teraz dowiadujemy się, że test prototypu w przestrzeni kosmicznej zaplanowano na koniec 2026 roku.
To niezwykłe przyspieszenie prac – trzeba pamiętać, że zwykle projekty związane z przestrzenią kosmiczną i nowymi technologiami mają spore opóźnienie – było możliwe dzięki częściowemu połączeniu prac, które zwykle odbywają się osobno, w drugiej i trzeciej fazie rozwoju projektu. To zaś jest możliwe dzięki wykorzystaniu sprzętu i doświadczeń z dotychczasowych misji w głębszych partiach kosmosu. Budujemy stabilną i bezawaryjną platformę, w której wszystko, co nie jest silnikiem, to technologie o niskim ryzyku, mówi Tabitha Dodson, odpowiedzialna z ramienia DARPA za projekt DRACO.
Wiemy, że niedawno zakończyła się pierwsza faza projektu, w ramach którego powstał projekt nowego reaktora. Nie ujawniono, ile faza ta kosztowała. Kolejne dwie fazy mają budżet 499 milionów USD. Jeśli prototyp zda egzamin, powstanie silnik dla misji na Księżyc. Przyniesie on spore korzyści. Napędzane nim rakiety będą przemieszczały się szybciej, zatem szybciej dostarczą ludzi, sprzęt i materiały na potrzeby budowy bazy na Księżycu. Jednak największe korzyści z nowego silnika ujawnią się podczas misji na Marsa.
Okno startowe misji na Czerwoną Planetę otwiera się co 26 miesięcy i jest dość wąskie. Dzięki lepszym silnikom i szybszym rakietom okno to można poszerzyć, co ułatwi planowanie i przeprowadzanie marsjańskich misji. Nie mówiąc już o tym, że skrócenie samej podróży będzie korzystne dla zdrowia astronautów poddanych promieniowaniu kosmicznemu. Prędkość obecnie stosowanych silników jest ograniczona przez dostępność paliwa i utleniacza. Silnik z reaktorem atomowym działałby dzięki ogrzewaniu ciekłego wodoru z temperatury -253 stopni Celsjusza do ponad 2400 stopni Celsjusza i wyrzucaniu przez dysze szybko przemieszczającego się rozgrzanego gazu. To on nadawałby ciąg rakiecie.
Pomysłodawcą stworzenia napędu atomowego jest polski fizyk Stanisław Ulam, który przedstawił go w 1946 roku. Dziesięć lat później rozpoczęto Project Orion. Efektem prac było powstanie prototypowego silnika, który został przetestowany na ziemi. Obecnie takie testy nie wchodzą w grę. Zgodnie z dzisiejszymi przepisami naukowcy musieliby przechwycić gazy wylotowe, usunąć z nich materiał radioaktywny i bezpiecznie go składować. Dlatego też prototyp zostanie przetestowany na orbicie 700 kilometrów nad Ziemią. Ponadto w latach 50. wykorzystano wzbogacony uran-235, taki jak w broni atomowej. Obecnie użyty zostanie znacznie mniej uran-235. Można z nim bezpieczne pracować i przebywać w jego pobliżu, mówi Anthony Calomino z NASA. Drugi z podobnych projektów, NERVA (Nuclear Engine for Rocket Vehicle Application), doprowadził do stworzenia dobrze działającego silnika. Ze względu na duże koszty projekt zarzucono.
Reaktor będzie posiadał liczne zabezpieczenia, które nie dopuszczą do jego pełnego działania podczas pobytu na ziemi. Dopiero po opuszczeniu naszej planety będzie on w stanie w pełni działać.
W czasie testów zostaną sprawdzone liczne parametry silnika, w tym jego ciąg oraz impuls właściwy. Impuls właściwy obecnie stosowanych silników chemicznych wynosi około 400 sekund. W przypadku silnika atomowego będzie to pomiędzy 700 a 900 sekund. NASA chce też sprawdzić, na jak długo wystarczy 2000 kilogramów ciekłego wodoru. Inżynierowie mają nadzieję, że taka ilość paliwa wystarczy na napędzanie rakiety przez wiele miesięcy. Obecnie górny człon rakiety nośnej ma paliwa na około 12 godzin. Silniki NTP powinny być od 2 do 5 razy bardziej efektywne, niż obecne silniki chemiczne. A to oznacza, że napędzane nimi rakiety mogą lecieć szybciej, dalej i zaoszczędzić paliwo.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.