Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Dostrzeżono najbardziej odległą znaną nam gwiazdę

Recommended Posts

Niezwykła koniunkcja pozwoliła astronomom na dostrzeżenie najbardziej odległej znanej nam gwiazdy. Znajduje się ona w odległości 9 miliardów lat świetlnych od Ziemi. Jej zarejestrowanie to niezwykłe osiągnięcie, gdyż zwykle nie potrafimy dostrzec gwiazd znajdujących się w odległości większej niż 100 milionów lat świetlnych.

Astronomowie standardowo obserwują galaktyki odległe o miliardy lat świetlnych. Można też obserwować równie odległe supernowe, które często są jaśniejsze niż cała ich galaktyka. Jednak poza wspomnianą granicą 100 milionów lat nie można odróżnić poszczególnych gwiazd w galaktykach.

Tym razem jednak było inaczej, a zaobserwowanie błękitnego olbrzyma Icarus (MACS J1149 LS1) było możliwe dzięki soczewkowaniu grawitacyjnemu. Zjawisko to pojawia się, gdy masywna galaktyka zagnie i powiększy światło obiektu znajdującego się za nią. Zwykle podczas soczewkowania grawitacyjnego obiekt powiększany jest to 50 razy. Jednak tym razem gwiazda została powiększona ponad 2000 razy.

"Po raz pierwszy obserwujemy normalną pojedynczą gwiazdę – nie supernową, nie rozbłysk gamma, ale normalną stabilną gwiazdę – znajdującą się w odległości 9 miliardów lat świetlnych", cieszy się profesor Alex Filippenko z Uniwersytetu Kalifornijskiego w Berkeley.

Icarusa odkrył Patrick Kelly z UC Berkeley, który monitorował supernową odkrytą w 2014 roku przez Teleskop Hubble'a. Supernową SN Refsdal zauważono dzięki soczewkowaniu grawitacyjnego, a jej obraz został powiększony przez galaktykę MACS J1149+2223 znajdującą się w odległości 5 miliardów lat. Kelly podejrzewał, że obiekt Icarus mógł zostać powiększony mocniej od SN Refsdal, dlatego postanowił mu się przyjrzeć. Szczegółowa analiza światła Icarusa wykazała, że jest to błękitny nadolbrzym, a dzięki doskonałej koniunkcji jego obraz został powiększony ponad 2000 razy, dzięki czemu można było go dostrzec.

Astronomowie sądzą, że w ciągu najbliższej dekady wielokrotnie będzie można obserwować Icarusa dzięki soczewkowaniu grawitacyjnemu. Niewykluczone, że jego jasność – z punktu widzenia obserwatora na Ziemi – zostanie zwiększona nawet 10 000 razy.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Te soczewki to bardzo dobry kierunek rozwoju astronomii.Trzeba tylko a właściwie aż popracować nad algorytmami które obraz z gabinetu luster przekształcą w naturalne kształty.

 

Share this post


Link to post
Share on other sites

Przy takich odległościach jedyne co możemy sobie poobserwować to widmo promieniowania.

Share this post


Link to post
Share on other sites
35 minut temu, ww296 napisał:

Przy takich odległościach jedyne co możemy sobie poobserwować to widmo promieniowania.

Ale z tego widma daje się zaskakująco dużo informacji uzyskać.

Share this post


Link to post
Share on other sites

Nie tyle dużo co wszystkie. Ale mój post był odpowiedzią na post Tempika o gabinecie luster sugerującym że widzimy kształt czyli rozmiar.

Share this post


Link to post
Share on other sites
Guest
4 godziny temu, ww296 napisał:

Przy takich odległościach jedyne co możemy sobie poobserwować to widmo promieniowania.

Widmo to bonus. Zwykle wszyscy widzą, że się pali, ale kto i co pali to już większe wyzwanie. Spektroskopia wymaga zdecydowanie więcej światła niż fotometria.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Planety mogą wymuszać na swoich gwiazdach macierzystych, by zachowywały się tak, jakby były młodsze niż są w rzeczywistości. Badania licznych układów przeprowadzone przy użyciu Chandra X-ray Observatory dostarczyły najsilniejszych jak dotąd dowodów, na to, że niektóre planety spowalniają proces starzenia się gwiazd.
      Już wcześniej zauważono pierwsze oznaki „odmładzania” gwiazd przez gorące jowisze, czyli gazowe olbrzymy, które znajdują się na orbitach podobnych do orbity Merkurego lub nawet bliżej. Jednak dopiero teraz udało się zjawisko to dobrze i systematycznie udokumentować.
      W medycynie, żeby stwierdzić, czy obserwowane zjawisko jest prawdziwe, czy też jest to odchylenie od normy, trzeba zaangażować do badań wielu pacjentów. Podobnie jest w astronomii, a te badania dają nam pewność, że gorące jowisze naprawdę powodują, że ich gwiazdy zachowują się tak, jakby były młodsze, mówi kierująca badaniami Nikoleta Ilic z Instytutu Astrofizyki im. Leibniza w Poczdamie.
      Gorące jowisze wpływają na swoje gwiazdy prawdopodobnie za pomocą sił pływowych, powodując, że gwiazdy szybciej obracają się wokół własnej osi niż gdyby nie posiadały tego typu plany. Szybciej obracająca się gwiazda jest bardziej aktywna i wytwarza więcej promieniowania rentgenowskiego, co jest cechą młodszych gwiazd.
      Z upływem czasu wszystkie gwiazdy spowalniają swój obrót i dochodzi na nich do mniejszej liczby rozbłysków. Jednak określenie wieku gwiazd nie jest łatwe, więc trudno jest stwierdzić, czy gwiazda, wokół której krąży gorący jowisz zachowuje się jakby była młodsza, czy rzeczywiście jest młodsza.
      Uczeni rozwiązali ten problem przyglądając się układom podwójnym, gdzie dwie odległe gwiazdy krążą wokół siebie, ale tylko jedna z nich posiada na orbicie gorącego jowisza. Astronomowie wiedzą, że gwiazdy w układach podwójnych są w tym samym wieku. Odległość pomiędzy takimi gwiazdami jest zbyt duża, by wpływały na swoje tempo obrotu lub by gorący jowisz wpływał na gwiazdę, wokół której nie krąży. Zatem gwiazda nie posiadająca gorącego jowisza może posłużyć do kontrolowania rzeczywistego wieku obu gwiazd układu.
      Naukowcy wykorzystali ilość promieniowania rentgenowskiego jako wskaźnik wieku gwiazd. Znaleźli około 30 układów podwójnych, w których jednej z gwiazd towarzyszył gorący jowisz. Okazało się, że gwiazdy z krążącym gorącym jowiszem zwykle emitowały więcej promieni X, zatem były bardziej aktywne, niż gwiazdy bez gazowego olbrzyma.
      Wcześniejsze badania pozwoliły na zdobycie pewnych wskazówek, ale teraz mamy w końcu statystycznie istotne dowody, że niektóre planety wpływają na swoje gwiazdy powodując, że zachowują się one tak, jakby były młodsze, stwierdza współautorka badań Marzieh Hosseini.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Niemal połowa gwiazd Drogi Mlecznej to obiekty samotne, jak Słońce. Druga połowa zaś to gwiazdy znajdujące się w układach podwójnych lub większych. W układach takich gwiazdy mogą znajdować się na niezwykle ciasnych orbitach. I właśnie taki, rekordowo ciasny układ, znaleźli właśnie astronomowie z MIT.
      Nowo odkryty system, ZTF J1813+4251, to układ kataklizmiczny o rekordowo krótkim czasie obiegu gwiazd wokół siebie. Gwiazdy okrążają się w ciągu zaledwie... 51 minut.
      Układy kataklizmiczne, zwane też zmiennymi kataklizmicznymi, składają się z gwiazdy ciągu głównego (podobne do Słońca) oraz z białego karła. Powstają one, gdy dwie gwiazdy zbliżą się do siebie na tyle, że biały karzeł zaczyna wchłaniać materię z gwiazdy mu towarzyszącej. W trakcie tego procesu dochodzi do pojawiania się olbrzymich zmiennych błysków światła. Astronomowie, obserwujący przed wiekami te rozbłyski, sądzili, że są one skutkiem jakiegoś kataklizmu. Stąd nazwa tych układów.
      W przypadku ZTF J1813+4251, w przeciwieństwie do innych podobnych systemów, udało się wielokrotnie zaobserwować przesłonięcie jednej gwiazdy przez drugą, co dało astronomom okazję do dokładnych pomiarów właściwości obu gwiazd. Dzięki temu mogli przeprowadzić symulacje obecnego wyglądu systemu oraz tego, jak będzie ewoluował przez najbliższych kilkaset milionów lat. Z symulacji wynika, że gwiazda ciągu głównego okrąża białego karła i traci na jego rzecz olbrzymie ilości wodoru. Z czasem zostanie obdarta z materii i pozostanie z niej głównie gęste bogate w hel jądro. Za około 70 milionów lat gwiazdy tak bardzo zbliżą się do siebie, że będą okrążały się w ciągu zaledwie 18 minut. Później zaczną się od siebie oddalać.
      Symulacje to potwierdzenie hipotez, które wysunięto przed laty. Mówiły one, że gwiazdy z układach kataklizmicznych wchodzą z czasem na ultrakrótkie orbity. Tutaj mamy do czynienia z rzadkim przypadkiem, gdy przyłapaliśmy jeden z takich systemów w momencie zmiany z akrecji wodoru na akrecję helu, mówi Kevin Burdge z MIT. Przewidywano, że obiekty takie będą wchodziły na ultrakrótkie orbity i od dawna zastanawiano się, czy będą one na tyle krótkie, by pojawiły się fale grawitacyjne.
      Nowy układ został odkryty przez naukowców z MIT, Harvard and Smithsonian Center for Astrophysics i innych instytucji w katalogu Zwicky Transient Facility (ZTF). Jest on tworzony w Palomar Observatory w Kalifornii. Umieszczony tam aparat fotograficzny przez lata wykonał ponad 1000 zdjęć każdej z ponad miliarda obserwowanych gwiazd, rejestrując w ten sposób zmiany ich jasności.
      Naukowcy przeanalizowali dane, szukając cech charakterystycznych systemów na ultrakrótkich orbitach, które mogłyby emitować olbrzymie rozbłyski światła oraz fale grawitacyjne. Stworzony przez Burdge'a algorytm wskazał na około milion gwiazd, które co mniej więcej godzinę prawdopodobnie emitowały rozbłyski. Następnie skupił się na rozbłyskach o szczególnych cechach. W ten sposób zauważył ZTF J1813+4251, układ, który znajduje się w odległości około 3000 lat świetlnych od Ziemi, w Gwiazdozbiorze Herkulesa.
      Burge i jego zespół rozpoczęli wówczas obserwacje za pomocą W.M. Keck Observatory na Hawajach i Gran Telescopio Canarias. Przekonali się, że znaleziony system daje wyjątkowo jasny sygnał. Dzięki temu możliwe były precyzyjne pomiary układu.
      ZTF J1813+4251 składa się prawdopodobnie z białego karła o rozmiarach 100-krotnie mniejszych niż Słońce i o połowie masy naszej gwiazdy. Towarzyszy mu gwiazda o masie i 1/10 rozmiarów Słońca. Obie gwiazdy okrążały się w ciągu 51 minut, ale coś tutaj nie pasowało.
      Ta druga gwiazda wyglądała jak Słońce, ale Słońce nie zmieści się na orbicie krótszej niż 8-godzinna, mówi Burdge. Wyjaśnieniem okazała się praca naukowa sprzed 30 lat autorstwa profesora MIT Saula Rappaporta. Przewidział on w niej, że układy o bardzo ciasnych orbitach mogą istnieć jako układy kataklizmiczne. Gdy biały karzeł pochłonie cały wodór z towarzyszącej mu gwiazdy podobne do Słońca, pozostaje gęste jądro z helu, które jest wystarczająco masywne, by martwa gwiazda znalazła się na ultrakrótkiej orbicie.
      ZTF J1813+4251 to układ kataklizmiczny, który znajduje się właśnie z momencie przejścia z gwiazdy wodorowej, w obiekt bogaty w hel. To szczególny układ. Mieliśmy olbrzymie szczęście, że zauważyliśmy system, który daje odpowiedź na ważne pytanie. To jedna z najpiękniejszych zmiennych kataklizmicznych, cieszy się Burdge.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu w Kopenhadze, badając populacje gwiazd poza Drogą Mleczną, dokonali odkrycia, które może zmienić nasze rozumienie wielu procesów astronomicznych, w tym tworzenia się czarnych dziur, powstawania supernowych oraz tego, dlaczego galaktyki umierają.
      Od lat 50. ubiegłego wieku przyjmuje się, że populacje gwiazd w innych galaktykach są podobne do tej, którą obserwujemy w Drodze Mlecznej – składają się one z gwiazd o dużej, średniej i małej masie. Duńscy naukowcy, na podstawie obserwacji 140 000 galaktyk do których analizy wykorzystano liczne zaawansowane modele, doszli do wniosku, że rozkład mas gwiazd w innych galaktykach wcale nie jest podobny do tego, co obserwujemy w najbliższym sąsiedztwie. Okazało się, że w odległych galaktykach gwiazdy mają zwykle większą masę niż w Drodze Mlecznej i u jej sąsiadów.
      Masa gwiazd wiele nam mówi. Jeśli zmienimy masę gwiazd, zmieni się też liczba supernowych oraz czarnych dziur powstających z masywnych gwiazd. Zatem uzyskane przez nas wyniki oznaczają, że musimy jeszcze raz rozważyć wiele naszych założeń, gdyż odległe galaktyki wyglądają inaczej niż nasza, mówi główny autor badań, Alber Sneppen z Instytutu Nielsa Bohra.
      Założenie, że rozkład wielkości i mas gwiazd z w odległych galaktykach jest taki sam jak w naszej, przyjęto przed około 70 laty dlatego, że nie wyliśmy w stanie wystarczająco szczegółowo galaktyk tych badać. Widzieliśmy jedynie wierzchołek góry lodowej i od dawna podejrzewaliśmy, że założenie, iż inne galaktyki wyglądają jak nasza, nie jest zbyt dobrym założeniem. Nikt jednak nie próbował dowieść, że w innych galaktykach populacje gwiazd wyglądają inaczej. Nasze badania pozwoliły nam to wykazać, a to otwiera drogę do lepszego zrozumienia tworzenia się galaktyk i ich ewolucji, wyjaśnia profesor Charles Steinhardt.
      Naukowcy wykorzystali katalog COSMO, wielką międzynarodową bazę danych zawierającą ponad milion obserwacji światła z galaktyk, od takich znajdujących się w naszym najbliższym sąsiedztwie, po obiekty odległe o 12 miliardów lat świetlnych. Autorzy analizy twierdzą na przykład, że odkryli, dlaczego w pewnym momencie galaktyki przestają tworzyć nowe gwiazdy. Teraz, gdy lepiej określiliśmy masy gwiazd, widzimy nowy wzorzec. Najmniej masywne galaktyki tworzą gwiazdy, a bardziej masywne ich nie tworzą. To wskazuje, że istnieje uniwersalny trend opisujący śmierć galaktyk, mówi Sneppen.
      Z badań wynika również, że większość galaktyk posiada bardziej masywne populacje gwiazd, niż sądzono. Ze szczegółami pracy można zapoznać się na łamach The Astrophysical Journal.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Teleskop Kosmiczny Hubble'a pobił wyjątkowy rekord – zaobserwował najdalej od Ziemi położoną indywidualną gwiazdę. Dotychczasowy rekord również należał do Teleskopu Hubble'a i został pobity w 2018 roku, kiedy to zaobserwowano MACS J1149+2223 Lensed Star 1 położoną w odległości 9 miliardów lat świetlnych od Ziemi. Rekord ten właśnie pobito i to od razu o miliardy lat świetlnych.
      Nowo zaobserwowana gwiazda znajduje się w odległości 12,9 miliarda lat świetlnych od naszej planety. Współczynnik przesunięcia ku czerwieni (redshift) dla tej odległości wynosi 6,2. Niemal nie mogliśmy w to uwierzyć, bo gwiazda znajduje się znacznie dalej, niż poprzedni rekord, mówi Brian Welch z Uniwersytetu Johnsa Hhopkinsa, główy autor artykułu opisującego osiągnięcie.
      Odkrycia dokonano w danych zebranych w ramach projektu Hubble's RELICS (Reionization Lensing Cluster Survey). Normalnie przy tych odległościach całe galaktyki wyglądają jak niewielkie smugi, w których światło milionów gwiazd zlewa się w jedno. Światło z galaktyki, w której znajduje się ta gwiazda zostało powiększone i rozproszone przez zjawisko soczewkowania grawitacyjnego w długi sierp, który nazwaliśmy Łukiem Wchodzącego Słońca, mówi Welch.
      Podczas szczegółowego badania galaktyki naukowcy zauważyli, że jedno z obserwowanych zjawisk jest powodowane przez ekstremalnie powiększoną w soczewkowaniu grawitacyjnym gwiazdę. Została ona nazwana Earendel, co w języku staroangielskim oznacza gwiazdę poranną. Odkrycie daje nadzieję na otwarcie całkiem nowego pola badań nad formowaniem się wczesnych gwiazd.
      Earendel powstała tak dawno, że może nie zawierać tych samych pierwiastków, co młodsze gwiazdy. Dzięki możliwości zbadania Earendel zyskamy okazję to przyjrzenia się wszechświatowi, jakiego nie znamy, ale który doprowadził do tego, co istnieje obecnie. To tak, jakbyśmy dotychczas czytali bardzo interesującą książkę, ale zaczęli od drugiego rozdziału, a teraz mieli okazję przeczytać, jak to wszystko się zaczęło, ekscytuje się Welch.
      Badacze sądzą, że Earendel ma masę co najmniej 50 razy większą od masy Słońca i jest miliony razy jaśniejsza od naszej gwiazdy. Mimo tego, że jest tak olbrzymia i jasna, nie bylibyśmy w stanie jej dostrzec z odległości, w jakiej się znajduje. Widzimy ją dzięki olbrzymiej gromadzie galaktyk WHL0137-08, który znajduje się między gwiazdą a Ziemią. Masa gromady zagina przestrzeń, działając jak olbrzymie szkło powiększające, dzięki któremu możemy dostrzec światło emitowane przez obiekty znajdujące się poza WHL0137-08.
      Szczęśliwie złożyło się, że Earendel znajduje się w takiej pozycji, iż jest maksymalnie powiększana przez soczewkę grawitacyjną tworzoną przez gromadę galaktyk. Dzięki temu „wystaje” z blasku milionów gwiazd swojej galaktyki macierzystej, a jej jasność jest wzmacniana przez soczewkę co najmniej tysiąckrotnie. Obecnie niw wiemy, czy Earendel jest częścią układu podwójnego, ale warto pamiętać, że większość masywnych gwiazd ma co najmniej jednego towarzysza.
      Specjaliści uważają, że przez wiele kolejnych lat Earendel będzie znacząco powiększana w wyniku soczewkowania. Gwiazdę będzie obserwował Teleskop Kosmiczny Jamesa Webba (JWST), a dzięki temu, że pracuje on głównie w podczerwieni, pozwoli na zdobycie wielu cennych informacji na jej temat. Uczeni spodziewają się, że Webb potwierdzi, iż Earendel to gwiazda, pozwoli nam też zmierzyć jej jasność i temperaturę, to zaś pozwoli na określenie typu gwiazdy i etapu życia, na jakim się znajduje.
      Astronomów szczególnie interesuje skład Earendel, gdyż gwiazda powstała zanim jeszcze wszechświat został wypełniony ciężkimi pierwiastkami wytworzonymi przez kolejne generacje gwiazd. Jeśli okaże się, że Earendel składa się wyłącznie w pierwotnego wodoru i helu, będzie to pierwszy dowód na istnienie gwiazd III populacji. To hipotetyczna populacja pierwszych bardzo masywnych gwiazd, które praktycznie nie zawierały metali. Składały się wyłącznie z wodoru i helu, z możliwą niewielką zawartością litu.
      Odkrycie Earendel przez Hubble'a daje nadzieję, że Webb dojrzy jeszcze bardziej odległe gwiazdy.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Teleskop Webba zbliża się do końca pierwsze fazy ustawiania zwierciadła głównego za pomocą NIRCam. Najpierw przysłał nam swoje selfie, a niedawno na Ziemię dotarło pierwsze zdjęcie HD 84406, gwiazdy, która będzie wykorzystywana do ustawiania zwierciadła. Obraz, który uzyskał teleskop jest bardzo podobny do tego, jaki otrzymywano podczas symulacji naziemnych.
      Tak, jak zapowiadano, HD 84406 zobaczyliśmy 18 razy, po jednym z każdego segmentu. Następnie obsługa naziemna poruszała poszczególnymi segmentami, by określić, z którego z nich pochodzi które zdjęcie. Obecnie trwa etap tworzenia „macierzy obrazów”, czyli takiego ustawiania segmentów, by wszystkie z uzyskanych obrazów miały wspólny punkt.
      Przeprowadzenie pierwszego etapu nie było proste. Najpierw trzeba było upewnić się, że NIRCam działa jak należy, a następnie zidentyfikować na wszystkich obrazach gwiazdę, która stanowi punkt odniesienia do ustawiania teleskopu. Przez kolejny miesiąc obsługa naziemna będzie ustawiała poszczególne segmenty zwierciadła oraz zwierciadło wtórne tak, byśmy w końcu otrzymali pojedynczy wyraźny obraz.
      Jesteśmy niezwykle zadowoleni z postępu prac nad ustawianiem zwierciadła. Naprawdę jesteśmy szczęśliwi widząc, jak światło trafia do NIRCam, mówi Marcia Rieke, profesor astronomii z University of Arizona, odpowiedzialna z instrument NIRCam.
      Proces wykonywania zdjęć rozpoczął się od ustawienia Teleskopu Webb w 156 różnych pozycjach, z których powinien zobaczyć HD 84406. Za pomocą 10 czujników NIRCam wykonano 1560 fotografii o łącznej pojemności 54 gigabajtów. Cały proces trwał niemal 25 godzin. Teleskop już w ciągu pierwszych 6 godzin zlokalizował gwiazdę i wykonał jej zdjęcia z pomocą każdego z segmentów zwierciadła. Fotografia połączono następnie w jedną. Przedstawione tutaj zdjęcie to centralny fragment olbrzymiej fotografii złożonej z 2 miliardów pikseli.
      Podczas wstępnego ustawiania prześledziliśmy fragment nieboskłonu o powierzchni niemal Księżyca w pełni. Zgromadzenie tak dużej ilości danych wymagało zarówno od instrumentów Webba, jak i urządzeń na Ziemi, by działały bez najmniejszych zakłóceń od samego początku. Okazało się, że światło z każdego z 18 segmentów jest skupione bardzo blisko centrum obszaru poszukiwań. To świetny punkt wyjścia do ustawiania zwierciadła, cieszy się Marshall Perrin ze Space Telescope Science Institute, zastępca głównego naukowca Webba.
      Zwierciadło główne ustawiane jest za pomocą urządzenia NIRCam. Dysponuje ono bowiem czujnikiem o bardzo szerokim polu widzenia, który bezpiecznie może pracować w temperaturach wyższych niż inne instrumenty naukowe teleskopu. Warto tutaj wspomnieć, że prace nad optyką Webba zaowocowały opracowaniem technologii COAS (Complete Ophthalmic Analysis System), która jest wykorzystywana w okulistyce i systemach korekcji wzroku iLASIK.
      NIRCam będzie wykorzystywany przez niemal cały czas ustawiania zwierciadła głównego. Trzeba jednak wiedzieć, że instrument pracuje w temperaturach znacznie wyższych niż idealne dlatego na rejestrowanych przezeń obrazach pojawiają się artefakty. Będzie ich coraz mniej w miarę schładzania instrumentu.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...