Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Znaleziono skuteczny sposób ochrony Wielkiej Rafy Koralowej?

Recommended Posts

Supercienka biodegradowalna powłoka o grubości 50 000 mniejszej od grubości włosa mogłaby chronić Wielką Rafę Koralową przed zagładą. Naukowcy z Australijskiego Instytutu Biologii Morskiej przeprowadzili serię testów, które wykazały, że unosząca się nad rafą warstwa węglanu wapnia, tego samego materiału, z którego wykonana jest rafa, uchroniłaby ją przed blaknięciem, blokując częściowo światło słoneczne.

Testy przeprowadzone na siedmiu gatunkach korali wykazały, że taka warstwa o 30% zmniejsza ilość docierającego doń światła i dzięki czemu większość gatunków nie ulega blaknięciu. "Przetestowaliśmy hipotezę, zgodnie z którą zmniejszenie ilości światła słonecznego chroni korale przed stresem prowadzącym do blanknięcia", mówi Anna Mardsen, dyrektor Great Barrier Reef Foundation. "Przy tym projekcie pracowali inżynierowie-chemicy, eksperci od polimerów, ekolodzy morscy i specjaliści od raf koralowych", dodaje.

Pani Madsen dodaje, że pokrycie całej rafy zajmującej powierzchnię 348 000 kilometrów kwadratowych byłoby niepraktyczne. Jednak wspomnianą powłoką można by chronić najbardziej cenne i najbardziej zagrożone fragmeny rafy.
W ubiegłym roku firm Deloitte oszacowała wartość Wielkiej Rafy Koralowej na 43 miliardy dolarów. Australia, ze swoją niewielką populacją i intensywnym zużyciem węgla, znajduje się w czołówce największych emitentów CO2 w przeliczeniu na głowę mieszkańca.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Po raz pierwszy długoterminowe rokowania dla Wielkiej Rafy Koralowej uznano za "bardzo złe". W najnowszym 5-letnim raporcie Great Barrier Reef Marine Park Authority stwierdziła, że głównym zagrożeniem dla rafy są rosnące temperatury morza.
      Pokłosiem znaczącego i wielkoskalowego oddziaływania rekordowych temperatur powierzchni morza jest przejście tutejszego habitatu ze stanu złego do bardzo złego.
      By spowolnić zniszczenie ekosystemu Rafy i wesprzeć jego regenerację [...], konieczne są globalne działania przeciwko zmianie klimatu.
      Przedstawiciele agendy dodają, że de facto zagrożenia dla Rafy są liczne, kumulatywne i narastające. Poza ociepleniem klimatu (stresem cieplnym) należą do nich spływy rolnicze czy działalność żarłocznych rozgwiazd - koron cierniowych (Acanthaster planci).
      Specjaliści podkreślają, że spadek "ratingu" rokowań z oceny "złe" w 2014 r. na "bardzo złe" w 2019 r. odzwierciedla większy zakres zniszczeń koralowców; są one skutkiem bieleń spowodowanych wzrostami temperatury morza w 2016 i 2017 r.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Być może już wkrótce bakterie będą wykorzystywane do zapobiegania dziurom powodowanym przez sól drogową.
      Sole drogowe, np. chlorek wapnia, stosuje się, by nie dopuścić do tworzenia się lodu i akumulacji śniegu. Przyczyniają się one jednak również do powstawania uszkodzeń nawierzchni drogi. Są one powodowane przez reakcje zachodzące z betonem i wodą z lodu i śniegu. W ich wyniku powstaje podchloryn wapnia (CAOXY), który infiltrując nawierzchnię drogi, m.in. odseparowuje kawałki betonu.
      Ostatnio naukowcy z Drexel University wykazali jednak, że niewielka domieszka bakterii w betonie może zapobiegać tworzeniu CAOXY.
      Autorzy raportu z pisma Construction and Building Materials doszli do takich wniosków, badając szczep Sporosarcina pasteurii. S. pasteurii to niezwykłe kalcyfikujące organizmy, które są w stanie indukować reakcję chemiczną prowadzącą do powstania węglanu wapnia (jest on często nazywany cementem natury). Tylko kilka rodzajów bakterii opanowało tę "sztuczkę", nazywaną fachowo biomineralizacją bądź bakteryjnie indukowanym strącaniem węglanu wapnia (ang. microbial induced calcium carbonate precipitation, MICCP).
      W ostatnim dziesięcioleciu S. pasteurii badano pod kątem zastosowania w naprawie pęknięć w pomnikach/zabytkach oraz betonowej infrastrukturze, a także w produkcji ekologicznych cegieł. Akademicy z Drexel University szybko zdali sobie sprawę z tego, że talenty bakterii mogą być całkiem przydatne także w zapobieganiu uszkodzeniom nawierzchni dróg.
      Przyglądaliśmy się produktowi reakcji angażującej te bakterie - kalcytowi - i zdaliśmy sobie sprawę, że sposób, w jaki go wytwarzają, może się przydać do zmieniania kierunku reakcji, która przekształca sól drogową w związek niszczący drogę. Wiedzieliśmy, że by wytworzyć nieszkodliwy kalcyt, S. pasteurii potrzebują chlorku wapnia. Byłoby więc świetnie, gdyby się udało wypracować metodę, aby bakterie były obecne w betonie w odpowiednim momencie i zapobiegły reakcji prowadzącej do degradacji materiału - opowiada dr Yaghoob Farnam.
      Na potrzeby eksperymentu Farnam i dr Christopher Sales przygotowali serię próbek betonu i dodali S. pasteurii. W części próbek znalazły się też składniki odżywcze potrzebne do ich przetrwania. Po 28 dniach ekspozycji na roztwór chlorku wapnia, która miała oddawać miesiąc warunków zimowych, wykonano serię testów. Analizowano integralność strukturalną próbek oraz ilość obecnego CAOXY.
      Badacze przyglądali się wibracjom akustycznym i rozwojowi mikroporów i stwierdzili, że po ekspozycji na chlorek wapnia beton wykonany z dodatkiem bakterii prawie nie ulegał deterioracji.
      W próbkach z bakteriami poziom CAOXY był o wiele niższy; to skutek MICCP. Obecność węglanu wapnia sugeruje, że S. pasteurii można też wykorzystać do wzmocnienia nawierzchni. Wg zespołu, praktyczne zastosowania wymagają jednak dalszych badań.
      Bakterie potrafią zmieniać swoje mikrośrodowisko. Tworzą środowisko z wysokim pH, bo przekształcają związki z pożywki w słabą zasadę [...]. Takie warunki sprzyjają raczej wytrącaniu jonów [...] do węglanu wapnia niż tworzeniu CAOXY - wyjaśnia Sales.
      Ponieważ S. pasteurii występują w naturze i nie są patogenne, mogą być bezpiecznym ekologicznie rozwiązaniem problemu niszczenia wielu dróg.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Instytutu Technologii Stevensa stworzyli powłokę np. do endoprotez stawów, która gdy pojawiają się bakterie, uwalnia celowane mikrodawki antybiotyków. Dzięki temu można znacząco obniżyć wskaźnik zakażeń.
      Prof. Matthew Libera opisał metodę powlekania implantu siecią mikrożelową. W skrócie są to plamki o średnicy 100-krotnie mniejszej od przekroju ludzkiego włosa, które absorbują pewne antybiotyki. Zachowanie mikrożelu reguluje się za pomocą ładunków elektrycznych; aktywność elektryczna zbliżających się bakterii prowadzi do uwolnienia leku.
      Mikrożele można zastosować w wielu różnych urządzeniach medycznych, w tym w zastawkach serca czy szwach chirurgicznych. Amerykańska armia, która współfinansowała badania, chce wdrożyć technologię w szpitalach polowych (obecnie zakażenia występują w 1/4 ran bojowych).
      Zakażenia po zabiegach chirurgicznych trudno zwalczyć, gdyż kolonizując powierzchnie, bakterie tworzą antybiotykooporne biofilmy. Libera i inni zaburzają ten cykl, zabijając bakterie, nim w ogóle zdobędą przyczółek.
      W odróżnieniu od tradycyjnych metod leczenia - układowych, które zalewają antybiotykiem cały organizm czy miejscowych, takich jak mieszanie antybiotyków z cementem kostnym - podejście mikrożelowe jest silnie celowane: uwalniane są maleńkie dawki antybiotyku do uśmiercenia pojedynczych bakterii. W ten sposób ogranicza się presję selekcyjną, prowadzącą do rozwoju superpatogenów.
      Amerykanie wyjaśniają, że inne obecnie rozwijane "samobroniące się" powierzchnie bazują na bakteryjnych produktach przemiany materii, które wyzwalają uwalnianie leków. Takie podejście jest jednak mniej efektywne od metody Libery, która może zabijać także formy spoczynkowe bakterii.
      Mikrożele są bardzo wytrzymałe; niegroźne im np. odkażanie etanolem. Poza tym tygodniami zachowują one stabilność i właściwie reagują na ludzką tkankę, co oznacza, że przechowują ładunek do momentu, aż jest on potrzebny i wspierają zdrowy wzrost kości.
      By nałożyć mikrożel na urządzenie medyczne, chirurg musi je na kilka sekund zanurzyć w specjalnej kąpieli. Druga kąpiel wysyca mikrożel antybiotykiem. Plany są takie, by w przyszłości lekarz przygotowywał urządzenia bezpośrednio przed wszczepieniem, wykorzystując antybiotyki dostosowane do czynników ryzyka danego pacjenta.
      Jak dotąd podejście testowano w warunkach in vitro.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ekstremalne warunki panujące w czasie lotów kosmicznych wzmacniają bakterie i jednocześnie osłabiają mechanizmy obronne zestresowanych członków załogi. Zjawiska te nasilają się z czasem, co podwyższa ryzyko infekcji. By zwiększyć szanse naszego gatunku na eksplorację głębokiego kosmosu, na pokładzie Międzynarodowej Stacji Kosmicznej przetestowano bazującą na srebrze i rutenie powłokę antydrobnoustrojową AGXX.
      Okazało się, że AGXX znacznie zmniejszyła liczbę bakterii na podatnych na skażenie powierzchniach.
      Loty kosmiczne mogą zmieniać nieszkodliwe bakterie w potencjalne patogeny; rozwijają one bowiem grube ochronne powłoki i oporność na antybiotyki, są bardziej żywotne, a także szybciej się namnażają i metabolizują. [W tym samym czasie] hormony stresu sprawiają, że astronauci są podatni na infekcje - opowiada prof. Elisabeth Grohmann z Beuth Hochschule für Technik Berlin.
      Na domiar złego geny odpowiedzialne za nowe cechy mogą być wymieniane, np. w biofilmie, między różnymi gatunkami bakterii.
      By poradzić sobie z tym problemem zespół Grohmann testował powłokę AGXX na drzwiach toalety z Międzynarodowej Stacji Kosmicznej (MSK). AGXX zawiera i srebro, i ruten [...]. Zabija wszelkie rodzaje bakterii, a także pewne grzyby, w tym drożdże, i wirusy. Efekt jest podobny do wybielacza, z tym że powłoka podlega samoregeneracji, a więc [zasadniczo] nigdy się nie zużywa.
      Podczas eksperymentów porównywano skuteczność AGXX, powłoki z samym srebrem (V2A-Ag) oraz niepowlekanej niczym stali nierdzewnej (materiał kontrolny, V2A). Na wszystkich trzech materiałach przeżywały głównie bakterie Gram-dodatnie, a wśród nich przede wszystkim Staphylococcus, Bacillus i Enterococcus spp. Nowa powłoka ze srebrem okazała się wysoce skuteczna, a powłoka z samym srebrem wykazywała niewielką aktywność antydrobnoustrojową (w zestawieniu z V2A liczba bakterii była niższa "zaledwie" o 30%).
      Po 6 miesiącach z AGXX nie pozyskano żadnych bakterii. Po 12 miesiącach pozyskano 9 izolatów, a po 19 miesiącach 3; to 80% spadek w porównaniu do czystej stali. Większość Gram-dodatnich patogennych izolatów wykazywała wielolekooporność. Do najczęściej stwierdzanych należały oporność na sulfametoksazol, erytromycynę i ampicylinę. Rekordzistą okazał się pozyskany po 12 miesiącach z V2A szczep paciorkowca kałowego (Enterococcus faecalis), który był oporny aż na 9 substancji.
      Przy wydłużonym czasie ekspozycji niektóre bakterie nie zostają zabite. Materiały antydrobnoustrojowe są bowiem statycznymi powierzchniami, na których akumulują się martwe komórki czy cząstki kurzu [...]. [Jak można się domyślić] zaburzają one bezpośredni kontakt między bakteriami a materiałem.
      Co ważne, na żadnej z powierzchni nie stwierdzono groźnych ludzkich patogenów, takich jak metycylinooporny gronkowiec złocisty (ang. methicillin resistant Staphylococcus aureus, MRSA) czy VRE (od ang. Vancomycin-Resistant Enterococcus). Z tego powodu obecnie ryzyko zakażenia jest dla załogi MSK niskie. Nie wolno jednak zapominać, że bakteryjne izolaty były zdolne do tworzenia biofilmu, a większość wykazywała oporność na co najmniej 3 antybiotyki. Dzieliły one także geny oporności; do najczęściej występujących należały ermC (warunkuje on oporność na erytromycynę) i tetK (odpowiada za oporność na tetracyklinę).
      Immunosupresja i zjadliwość bakterii, a więc ryzyko infekcji, rosną w miarę trwania lotu. Jeśli chcemy spróbować dłuższych misji na Marsa itp., musimy nadal rozwijać nowe metody zwalczania zakażeń bakteryjnych - podsumowuje Grohmann.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Poliuretanowa powłoka, która stopniowo uwalnia auranofinę, fosfinowy kompleks Au(I), pomaga przez niemal miesiąc zabijać bakterie. Podczas testów radziła sobie z metycylinoopornym gronkowcem złocistym (ang. methicillin-resistant Staphylococcus aureus, MRSA). Naukowcy uważają, że można by ją wykorzystać m.in. w cewnikach.
      Chcieliśmy uzyskać powłokę, która uśmiercałaby bakterie w formie planktonicznej i zapobiegałaby kolonizacji powierzchni. Wstępne dane pokazują, że mamy coś naprawdę obiecującego - opowiada prof. Anita Shukla z Brown University.
      Podczas testów poliuretanowa powłoka z auranofiną nie tylko zabijała gronkowce, ale i nie dopuszczała do powstawania biofilmów MRSA, które są szczególne oporne na leczenie.
      Autorzy publikacji z Frontiers in Cellular and Infection Microbiology wyliczają, że w samych USA rokrocznie zakłada się ponad 150 mln cewników naczyniowych. Zakażenia odcewnikowe rozwijają się u 250 tys. pacjentów rocznie; do zgonu dochodzi nawet w 25% przypadków. Koszty terapii są ogromne.
      Wcześniejsze próby poradzenia sobie z problemem nie były raczej udane. Powłoki antybakteryjne często tracą skuteczność po maksymalnie 2 tygodniach, bo zbyt szybko uwalniają lek. Poza tym bywa, że w powłokach wykorzystuje się tradycyjne antybiotyki, co w przypadku długotrwałego stosowania rodzi uzasadnione obawy odnośnie do rozwoju lekooporności.
      W swojej powłoce Shukla i inni zastosowali jednak kompleks złota(I) - auranofinę. Światowa Organizacja Zdrowia klasyfikuje ją jako lek antyartretyczny, ale badania Eleftheriosa Mylonakisa i Beth Fuchs z Brown University wykazały, że bardzo skutecznie zabija ona MRSA i inne niebezpieczne bakterie. Poza tym auranofina działa w taki sposób, że patogenom trudno rozwinąć oporność. Dotąd nie stosowano jej w żadnej powłoce.
      Podczas eksperymentów auranofinę dodawano do roztworu poliuretanu. Następnie rozpuszczalnik odparowywano, uzyskując rozciągliwą, wytrzymałą powłokę cewnika. Okazało się, że powłoka wytrzymuje bez pękania nawet 500% wydłużenie.
      Testując skuteczność rozwiązania, Amerykanie umieszczali powleczone cewniki w roztworze zawierającym MRSA oraz w hodowli MRSA na płytkach agarowych. Ustalono, że powłoki hamowały wzrost gronkowców od 8 do 26 dni, zależnie od zastosowanego stężenia auranofiny. Obserwując ewentualne przejawy tworzenia biofilmu, zespół posłużył się obrazowaniem bioluminescencji. Okazało się, że nie było żadnych sygnałów tworzenia biofilmu. Poliuretan działa jak bariera otaczająca auranofinę, poprawiając długoterminową wydajność antybakteryjną i antybiofilmową.
      Wstępne testy toksyczności pokazały, że powłoki nie wywierają niekorzystnego wpływu na ludzkie komórki krwi czy hepatocyty. Fakt, że obie składowe powłoki zostały zatwierdzone przez FDA, powinien przyspieszyć proces wydawania zezwoleń na testy in vivo.

      « powrót do artykułu
×
×
  • Create New...