Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

W przypadku samców nie zawsze większe jest lepsze. Często duże osobniki czerpią korzyści ze swoich dużych gabarytów, ponieważ wygrywają więcej walk o samice czy terytorium. Zespół biologa ewolucyjnego Charlesa Foxa z University of Kentucky uważa jednak, że czasem mali odnoszą zwycięstwo nad olbrzymami. Mniejsze samce prawdopodobnie lepiej latają, ponieważ łatwiej nawigują czy wznoszą się w powietrze.

Badacze zajęli się przypadkiem chrząszczy z podrodziny strąkowcowatych Stator limbatus. Wyhodowano 8 populacji owadów: przedstawiciele jednych byli duzi, innych mali. Następnie biolodzy pozwolili poruszać się samcom wolno. Na drugim końcu udostępnionego pomieszczenia znajdowały się samice.

Mniejsze chrząszcze szybciej wzbijały się w powietrze i prędzej lądowały koło samic niż większe okazy. To pozwalało im spółkować szybciej i częściej. Artykuł Foxa i jego współpracowników ukazał się w internetowym wydaniu pisma Biology Letters.

Podobne zjawisko można zaobserwować wśród ptaków siewkowych, które współzawodniczą w akrobatycznych lotach. Drobniejsze samce wypadają lepiej, ponieważ podczas pokazów potrafią sprawniej zakręcać. Odkrycie zespołu biologów pozwala wyjaśnić, dlaczego samce większości owadów są mniejsze od samic.

Minichrząszcze funkcjonują też lepiej w niskich temperaturach. Prawdopodobnie z powodu niskiej wagi mniejsze osobniki szybciej się rozgrzewają i prędzej rozpoczynają lot w kierunku samicy. Może być też tak, że w chłodzie mięśniom dużych okazów trudniej dźwignąć w górę dodatkowe gramy...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mały chrzaszcz ma pecha bo akurat klimat się ociepla , duże jest jest piękne więc nie musi się spieszyć bo to i tak samica wybiera partnera ;D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Amerykańskie służby celne zwróciły Mali 921 ukradzionych artefaktów. Wśród nich znajdowało się sześć dużych urn pogrzebowych z lat 900–1700, naczynie w kształcie podwójnego kubka zdobione za pomocą grzebienia (l. 800–1500) czy polichromowane naczynie z lat 1100–1400 o wysokiej szyjce, a także ponad 900 kamiennych narzędzi i siekier z neolitu. Zabytki zostały przekazane ambasadorowi Issie Konfourou, przedstawicielowi Mali przy ONZ.
      W 2009 roku US Customs and Border Patrol poinformował agentów Homeland Security Investigations o podejrzanym kontenerze, który przypłynął do Houston. Według dokumentów, miał on zawierać repliki zabytków. Jednak celnicy stwierdzili, że "przedmioty wydawały się autentyczne, były pokryte krwią i odchodami, co zapaliło w głowach celników ostrzegawcze światełko, że mogą mieć do czynienia z przemytem".
      Urząd celny zwrócił się wówczas do profesor Susan McIntosh z Rice University, która jest specjalistką od kultury Afryki Zachodniej. Uczona napisała oficjalny raport, w którym stwierdziła, że to ukradzione autentyczne przedmioty. Niektóre z przedmiotów zwrócono już w 2011 roku, jednak zwrot reszty wstrzymano. W Mali wybuchała wojna, a przejmujący coraz więcej terenów islamiści niszczyli bezcenne zabytki. Informowaliśmy wówczas o niszczeniu przez nich liczących setek lat mauzoleów i manuskryptów. Szczególnie skupili się na Timbuktu, którego niezwykłe dziedzictwo opisaliśmy już wcześniej.
      W końcu z czerwcu 2020 roku amerykański Departament Stanu przyznał grant malijskiemu Narodowemu Dyrektoriatowi Dziedzictwa Kulturowego. Przyznane pieniądze mają zostać przeznaczone na przewiezienie do Mali odzyskanych zabytków oraz na zorganizowanie w przyszłości ich wystawy. Tymczasem przed Międzynarodowym Trybunałem Karnym w Hadze rozpoczął się proces niejakiego Al Hassana Ag Abdoul Aziza Ag Mohameda Ag Mahmouda, który jest sądzony m.in. za niszczenie zabytków Timbuktu.
      Spuścizna kulturowa i materialna narodu określa, kim są tworzący go ludzie. Nikt nie ma prawa rabować i niszczyć dziedzictwa narodowego i historii. Będziemy pracowali z naszymi partnerami na całym świecie na rzecz ścigania każdego, kto rabuje bezcenne skarby narodowe i będziemy pracowali na rzecz ich zwrócenia tam, skąd pochodzą, mówi agent specjalny HSI, Mark Dawson.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Drobny chrząszcz sprzed milionów lat jest pierwszym gatunkiem owada, który został zidentyfikowany w skamieniałych odchodach – tzw. koprolicie. Pochodzą one przypuszczalnie od przodka dinozaurów, zamieszkującego obszar dzisiejszego Śląska – informują naukowcy w Current Biology.
      Niewielkie, pokawałkowane chrząszcze zaliczono do gatunku nazwanego Triamyxa coprolithica. Jest to pierwszy gatunek owada zidentyfikowany w koprolicie, czyli skamieniałych odchodach.
      Same zaś koprolity to najprawdopodobniej pozostałość po przodku dinozaurów – żyjącym 230 mln lat temu gadzie z gatunku Silesaurus opolensis. Autorzy nowej publikacji – choć nie są tego w stu procentach pewni - typują jednak właśnie przedstawiciela tej grupy ze względu na kształt, wielkość i inne cechy koprolitów.
      Silezaury żyły w późnym triasie na terenie; ich znane skamieniałości pochodzą z Krasiejowa (woj. opolskie). Były stosunkowo niewielkie, szacuje się, że ważyły ok. 15 kg i mierzyły ok. 2 metrów. Ich szczęki zakończone były dziobem, który mógł służyć do przeczesywania ściółki i wybierania owadów z ziemi, jak robią niektóre ptaki.
      Badania prowadził międzynarodowy zespół z ośrodków naukowych w Szwecji, na Tajwanie, w Niemczech i w Meksyku.
      Nigdy nie sądziłem, że dowiemy się, co ten triasowy poprzednik dinozaurów jadł na obiad - mówi jeden z autorów artykułu, Grzegorz Niedźwiedzki z Uniwersytetu w Uppsali (Szwecja).
      Naukowcy prześwietlili koprolit w synchrotronie, dzięki czemu dokonali trójwymiarowej, komputerowej rekonstrukcji jego zawartości, nie niszcząc całości znaleziska.
      Wewnątrz znaleźli liczne fragmenty chrząszczy, z których większość należała do jednego gatunku. Niektóre przetrwały niemal w całości, z dobrze zachowanymi, delikatnymi czułkami i odnóżami. Należały one do podrzędu myxophaga, który istnieje do dzisiaj. Obecnie chrząszcze z tej grupy zamieszkują podmokłe stanowiska i żerują na glonach.
      Sposób zachowania chrząszczy w koprolicie przypomina nieco sposób zachowania w bursztynach, które zwykle stanowią źródło najlepiej zakonserwowanych skamieniałości owadów. Bursztyny tworzyły się jednak dopiero w stosunkowo niedawnej przeszłości geologicznej i najstarsze, zachowane w nich owady mają ok. 140 mln lat - przypominają autorzy nowej publikacji. Ich zdaniem nowe badanie pozwala uznać koprolity za cenne źródło okazów, jak też wiedzy nt. ewolucji dużo starszych grup owadów, a zarazem – informacji nt. diety wymarłych kręgowców

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Jak szybko makroewolucja zmienia ssaki? Okazuje się, że po 24 mln pokoleń zwierzę wielkości myszy osiągnęłoby rozmiary słonia. Królik mógłby mu dorównać szybciej, bo po 10 mln pokoleń (PNAS).
      Zespół dr Alistaira Evansa z Monash University zauważył, że tempo zmniejszania jest o wiele większe od tempa powiększania. Potrzeba bowiem jedynie 100.000 pokoleń, aby zaszła duża zmiana prowadząca do skarłowacenia.
      Naukowcy przyglądali się 28 grupom zwierząt z różnych kontynentów i basenów oceanicznych, które zamieszkiwały Ziemię w ciągu 70 mln lat (pod uwagę wzięto 20 okresów). Znalazły się wśród nich słonie, naczelne i walenie. Zmiany wielkości śledzono raczej w skali pokoleń niż lat. Pozwoliło to na dokonywanie sensownych porównań między gatunkami o różnej długości życia.
      Okazało się, że zmiany wielkości waleni zachodzą 2-krotnie szybciej niż zmiany wielkości ssaków lądowych. To prawdopodobnie dlatego, że łatwiej być dużym w wodzie [wyporność ogranicza modyfikacje budowy przy wzroście masy] - wyjaśnia dr Erich Fitzgerald z Muzeum Wiktorii.
      Dwudziestoosobowy zespół biologów i paleontologów wyliczał maksymalny wskaźnik wzrostu dla kladu, który oznaczał maksymalne tempo ewolucji danej cechy w obrębie jakiejś grupy zwierząt. W ten sposób ustalono, że do 100-, 1000- i 5000-krotnego wzrostu masy ssaka lądowego potrzeba, odpowiednio, minimum 1,6, 5,1 i 10 mln pokoleń. W przypadku waleni wartości te były mniejsze i wynosiły, odpowiednio, 1,1, 3 i 5 mln pokoleń. I tak po 30 mln lat (5 mln pokoleń) waleń ważący początkowo 25 kg mógłby ostatecznie osiągnąć masę 190 ton - tyle waży płetwal błękitny.
      Evans podkreśla, że zaskoczyło go, że zmniejszenie rozmiarów ciała zachodzi ponad 10-krotnie szybciej niż powiększanie. Wiele miniaturowych zwierząt, np. mamut karłowaty, żyło na wyspach, co pozwala wyjaśnić ograniczenie gabarytów. Kiedy stajesz się mniejszy, potrzebujesz mniej pożywienia i możesz się szybciej rozmnażać, co jest sporą zaletą na małych wyspach.
      Aby określić wymiary danego zwierzęcia, akademicy wykorzystali zęby, czaszki oraz kości kończyn i porównywali je z częściami ciała współczesnych gatunków. Co ciekawe, stwierdzono, że niemal wszystkie ssaki są teraz mniejsze niż w czasie ostatnich zlodowaceń. Być może dlatego, że największe zwierzęta zostały wybite albo przez to, że jest cieplej, większe rozmiary przestały być już tak korzystne. Od reguły istnieje jednak pewien wyjątek - płetwal błękitny. On nadal staje się coraz większy. Niewykluczone, że przyczyną są prądy morskie, które zwiększają liczebność kryli wokół Antarktydy. Przyszłość płetwali wydaje się jednak niepewna, ponieważ nadmierne odławianie ryb może zagrozić ich źródłom pokarmu. Jeśli tak, do osiągnięcia ich maksymalnych rozmiarów dojdzie jeszcze za naszego życia - dodaje Fitzgerald.
    • przez KopalniaWiedzy.pl
      Skamieniały okaz chrząszcza, znaleziony na południu Syberii w mioceńskich osadach rzeki Irtysz sprzed 16-23 mln lat, reprezentuje żyjący jeszcze dziś gatunek - Helophorus sibiricus. Należy on do rodziny kałużnicowatych (Hydrophilidae), występującej zarówno w Eurazji, jak i w Ameryce Północnej.
      W 1860 r. jako pierwszy opisał ten gatunek chrząszcza rosyjski entomolog Wiktor Iwanowicz Moczulski, który pracował z okazami zebranymi nad Bajkałem. H. sibiricus prowadzi wodny tryb życia, zamieszkuje głównie istniejące okresowo, obfitujące w zalaną roślinność zbiorniki.
      Na podstawie zapisu kopalnego kiedyś uznawano, że średni okres występowania gatunku owada to ok. 2-3 mln lat. Biolodzy coraz częściej natrafiają jednak na dowody, że to nieprawda. Datowanie metodą zegara molekularnego, która zakłada, że tempo narastania różnic jest w miarę stałe, sugeruje, że niektóre gatunki owadów powstały co prawda w plejstocenie (tak twierdzą Cardoso i Vogler w artykule opublikowanym w 2005 r. w piśmie Molecular Ecology), ale niektóre mogły przetrwać nawet 10-20 mln i żyją nadal także dziś. Na razie nie wiadomo, jak poradziły sobie z wydarzeniami, które wyeliminowały inne zwierzęta. Niewykluczone, że było to możliwe dzięki zamiłowaniu do stabilnych środowisk.
      Niestety, dotąd znaleziono niewiele skamieniałości, które potwierdzałyby założenie o długowieczności gatunków owadów. Często cechy wskazujące na przynależność taksonomiczną i pozwalające dokonywać porównań ze współczesnymi owadami (przede wszystkim budowa męskich genitaliów) zostały zatarte przez czas i warunki "przechowywania".
      W znalezionym przez zespół Martina Fikáčka z Muzeum Narodowego w Pradze okazie nie zachowały się co prawda genitalia, widać za to doskonale typowe dla gatunku ziarnistości na przedpleczu, czyli widocznej z góry przedniej części tułowia.
    • przez KopalniaWiedzy.pl
      Oskórek chrząszczy mieni się prawdziwą feerią barw. Co się jednak dzieje, gdy te piękne owady umierają i ulegają fosylizacji? Ile pierwotnego koloru (i czy w ogóle) zachowuje się w skamielinie? Teraz już można odpowiedzieć na te pytania, bo dzięki mikroskopom elektronowym udało się z dużym prawdopodobieństwem odtworzyć wygląd chrząszczy żyjących od 15 do 47 mln lat temu.
      Kolory, jakie widzimy u chrząszczy, są skutkiem oddziaływania promieni świetlnych z oskórkiem. Drobne twory z chityny m.in. zaginają i odbijają światło, by wzmocnić fale o konkretnej długości. Z tego powodu mówi się o kolorach strukturalnych, które do zaistnienia nie wymagają obecności pigmentu.
      Amerykanie analizowali oskórki szeregu okazów, by ustalić, jak fosylizacja, w czasie której pewne atomy i cząsteczki mogą zostać usunięte lub zastąpione, wpłynęła na właściwości optyczne kutykuli.
      Okazało się, że choć sama struktura się zachowała, jej budowa chemiczna rzeczywiście się zmieniła. Doszło do przesunięcia ubarwienia ku czerwieni, czyli ku falom o większej długości. Z tego powodu owad fioletowy za życia stawał się po śmierci i upływie wielu lat niebieski, a niebieski ulegał zzielenieniu. Jak wyjaśnia McNamara, zmieniał się współczynnik załamania oskórka [czyli skład chemiczny materiału].
      Członkowie zespołu podkreślają, że stopień przesunięcia ku czerwieni jest różny u poszczególnych okazów i że wszystkie badane egzemplarze pochodzą z podobnych osadów. Nie wiadomo więc, co by się stało, gdyby prehistoryczne chrząszcze zmarły i leżały gdzie indziej. By stwierdzić, czy ewentualny kolor (lub brak koloru) jest prawdziwy, entomolodzy analizowali owady z 5 kenozoicznych biotopów.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...